Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Publication year range
1.
Int J Pharm ; 607: 120975, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34363913

ABSTRACT

Surgery combined with postoperative treatment is a widely accepted therapeutic strategy against breast cancer. Macrophage-based carriers have been proved to be an effective postoperative drug delivery system due to their inflammatory tendency. However, the slow and incomplete release of the cargo and the postoperative inflammation remain to be solved. Here, we described a macrophage-mediated photothermal therapy combined with anti-inflammatory strategy to inhibit breast cancer postoperative relapse. The anti-inflammatory resveratrol and photothermal agent indocyanine green (ICG) were loaded in octaarginine (R8)-modified liposomes, then ingested by macrophages to form the macrophage-based drug delivery system (Res/ICG-R8-Lip@MP). Res/ICG-R8-Lip@MP showed effective tumor-targeting ability via inflammatory tropism of macrophages and excellent near-infrared (NIR) photothermal performance. In vitro experiments showed that the carrier could not only trigger drug release though inflammation, but also utilize the photothermal conversion property to destroy the macrophage-based carrier at the local tumor to maximize drug release. In vivo experiments indicated that Res/ICG-R8-Lip@MP ablated residual tumor tissues and reduced the postoperative inflammation, and at the same time achieved significant effect of inhibiting tumor postoperative relapse. This synergistic photothermal and anti-inflammatory strategy has great potential in postoperative treatment of breast cancer.


Subject(s)
Hyperthermia, Induced , Triple Negative Breast Neoplasms , Anti-Inflammatory Agents , Cell Line, Tumor , Drug Delivery Systems , Drug Liberation , Humans , Indocyanine Green , Macrophages , Neoplasm Recurrence, Local/prevention & control
2.
J Control Release ; 321: 564-575, 2020 05 10.
Article in English | MEDLINE | ID: mdl-32112854

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is rich in cancer-associated fibroblasts (CAFs), which participate in the formation of tumor stroma. However, the dense tumor stroma of PDAC presents major barriers to drug delivery, resulting in an obstacle for PDAC therapy. Considering the special tumor microenvironment of PDAC, we constructed a novel nanoparticle which is responsive to the membrane biomarker FAP-α on CAFs and near-infrared (NIR) laser irradiation. Small sized albumin nanoparticle of paclitaxel (HSA-PTX) with strong tumor-penetration ability was encapsulated into the CAP-(a FAP-α responsive cleavable amphiphilic peptide) modified thermosensitive liposomes (CAP-TSL). Moreover, IR-780, a photothermal agent, was incorporated into CAP-TSL to afford CAP-ITSL. The designed HSA-PTX@CAP-ITSL increased the drug retention of HSA-PTX in solid tumor and HSA-PTX was released via FAP-α (specifically expresses on CAFs) triggered. Under sequential stimulation of NIR laser irradiation, IR-780 produced hyperthermia to kill tumor cells and expand the tumor interstitial space at the same time, which further promoted the release of small sized HSA-PTX in deep tumor regions. Consequently, the excellent antitumor efficacy of HSA-PTX@CAP-ITSL was demonstrated in Pan 02 subcutaneous and orthotopic tumor mouse models. Therefore, HSA-PTX@CAP-ITSL well combined chemotherapy with photothermal therapy, providing a promising drug delivery strategy for PDAC treatment.


Subject(s)
Albumins , Cancer-Associated Fibroblasts , Drug Liberation , Nanoparticles , Pancreatic Neoplasms , Pharmaceutical Preparations , Animals , Cell Line, Tumor , Lipids , Mice , Paclitaxel , Pancreatic Neoplasms/drug therapy , Perfusion , Phototherapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL