Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621984

ABSTRACT

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Reactive Oxygen Species , Rats, Sprague-Dawley , Caspase 3/metabolism , Signal Transduction , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , RNA, Messenger , Apoptosis
2.
Fitoterapia ; 175: 105928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548027

ABSTRACT

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.


Subject(s)
Deoxyglucose , Drugs, Chinese Herbal , Glyoxal , Pyruvaldehyde , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Pyruvaldehyde/analysis , Chromatography, High Pressure Liquid , Deoxyglucose/analogs & derivatives , Deoxyglucose/analysis , Glyoxal/analysis , Diacetyl/analysis , Molecular Structure , Fruit/chemistry , Plants, Medicinal/chemistry , Seeds/chemistry
3.
J Food Prot ; 87(4): 100244, 2024 04.
Article in English | MEDLINE | ID: mdl-38378071

ABSTRACT

Strawberries rapidly deteriorate postharvest, necessitating effective measures to extend their shelf life. This study focused on developing an eco-friendly chitosan-based protective film for strawberry preservation. Strawberries were treated with a coating solution containing varying concentrations of hawthorn leaf extract (HLE) (0.4%, 0.7%, and 1.0%), 1.5% chitosan (CH), and 1% acetic acid. The results demonstrated that coating strawberry fruit with 1% CH-HLE notably delayed fruit spoilage. In-depth analysis revealed that, compared with the uncoated strawberry fruits, the 1% CH-HLE coating effectively reduced weight loss, the respiration intensity, malondialdehyde (MDA) levels, and superoxide anion (O2·-) production. Additionally, the coated strawberries exhibited improved firmness, total soluble solids (TSS), vitamin C (Vc) content, titratable acidity (TA), and total phenolic compound (TPC) content. The enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in the CH-HLE-coated strawberries were greater than those in their uncoated counterparts. The application of a 1% CH-HLE coating successfully delayed spoilage and extend the shelf life of the strawberries by approximately 4-5 days. These findings suggest that CH-HLE has significant potential as a resource for protecting fruits and vegetables, offering an environmentally sustainable solution for postharvest preservation.


Subject(s)
Chitosan , Crataegus , Fragaria , Food Preservation/methods , Chitosan/pharmacology , Fruit , Plant Extracts/pharmacology
4.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142744

ABSTRACT

Bioactive compounds in some herbs can, directly and indirectly, protect against photoaging. We evaluated the effects of Gastrodia elata Blume (GE) and Poria cocos Wolf (PC) water extracts on ultraviolet (UV) B-induced skin lesions by acute UVB exposure in ICR mice and explored their mechanism of action. After removing the hair on the back of the mice, UVB (280-310 nm) was exposed to the back for 30 min to induce skin damage. Four UVB exposure groups were divided into the following according to the local application (1,3-butanediol extract) on the dorsal skin and oral intake (0.3 g water extract/kg body weight/day): 1,3-butanediol and cellulose(control; UV-Con), retinoic acid (positive-control; UV-Positive), PC extracts (UV-PC), and GE extracts (UV-GE). The fifth group had no UVB exposure with the same treatment as the UV-Con (Normal-control). The erythema, burns, erosion, and wounds of the UV-PC and UV-PC groups were alleviated, and the most significant improvements occurred in the UV-PC group. PC and GE reduced the thickness of the dorsal skin tissue, the penetration of mast cells, and malondialdehyde contents. The mRNA expression of TNF-α, IL-13, and IL-4, inflammatory factors, were also reduced significantly in the dorsal skin of the UV-PC and UV-GE groups. UV-PC, UV-GE, and UV-Positive showed improvements in UV-induced intestinal tissue inflammation. UV-Con deteriorated the intestinal morphology, and PC and GE alleviated it. The α-diversity of the fecal microbiota decreased in the UV-control, and UV-PC and UV-GE prevented the decrease. Fecal metagenome analysis revealed increased propionate biosynthesis in the UV-PC group but decreased lipopolysaccharide biosynthesis in the UV-PC and UV-GE groups compared to UV-Con. In conclusion, the local application and intake of PC and GE had significant therapeutic effects on acute UV-induced skin damage by reducing oxidative stress and proinflammatory cytokines, potentially promoting the gut-microbiota-gut-skin axis.


Subject(s)
Gastrodia , Wolfiporia , Agaricales , Animals , Butylene Glycols , Cellulose , Inflammation/drug therapy , Interleukin-13 , Interleukin-4 , Intestines , Lipopolysaccharides , Malondialdehyde , Mice , Mice, Inbred ICR , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Propionates , RNA, Messenger , Skin , Tretinoin , Tumor Necrosis Factor-alpha/genetics , Ultraviolet Rays , Water
5.
Front Pharmacol ; 13: 919553, 2022.
Article in English | MEDLINE | ID: mdl-35873560

ABSTRACT

The therapeutic effects of electroacupuncture (EA) on the comorbidity of visceral pain and anxiety in patients with inflammatory bowel disease (IBD) is well known. It has been known that the ventral hippocampus (vHPC) and the cannabinoid type 1 receptors (CB1R) are involved in regulating anxiety and pain. Therefore, in this study, we determined whether EA reduces visceral pain and IBD-induced anxiety via CB1R in the vHPC. We found that EA alleviated visceral hyperalgesia and anxiety in TNBS-treated IBD mice. EA reversed over-expression of CB1R in IBD mice and decreased the percentage of CB1R-expressed GABAergic neurons in the vHPC. Ablating CB1R of GABAergic neurons in the vHPC alleviated anxiety in TNBS-treated mice and mimicked the anxiolytic effect of EA. While ablating CB1R in glutamatergic neurons in the vHPC induced severe anxiety in wild type mice and inhibited the anxiolytic effect of EA. However, ablating CB1R in either GABAergic or glutamatergic neurons in the vHPC did not alter visceral pain. In conclusion, we found CB1R in both GABAergic neurons and glutamatergic neurons are involved in the inhibitory effect of EA on anxiety but not visceral pain in IBD mice. EA may exert anxiolytic effect via downregulating CB1R in GABAergic neurons and activating CB1R in glutamatergic neurons in the vHPC, thus reducing the release of glutamate and inhibiting the anxiety circuit related to vHPC. Thus, our study provides new information about the cellular and molecular mechanisms of the therapeutic effect of EA on anxiety induced by IBD.

6.
Cells ; 11(15)2022 07 26.
Article in English | MEDLINE | ID: mdl-35892598

ABSTRACT

Attenuating acetylcholinesterase and insulin/insulin-like growth factor-1 signaling in the hippocampus is associated with Alzheimer's disease (AD) development. Fucoidan and carrageenan are brown and red algae, respectively, with potent antibacterial, anti-inflammatory, antioxidant and antiviral activities. This study examined how low-molecular-weight (MW) and high-MW fucoidan and λ-carrageenan would improve memory impairment in Alzheimer's disease-induced rats caused by an infusion of toxic amyloid-ß(Aß). Fucoidan and λ-carrageenan were dissected into low-MW by Luteolibacter algae and Pseudoalteromonas carrageenovora. Rats receiving an Aß(25-35) infusion in the CA1 region of the hippocampus were fed dextrin (AD-Con), 1% high-MW fucoidan (AD-F-H), 1% low-MW fucoidan (AD-F-L), 1% high-MW λ-carrageenan (AD-C-H), and 1% low-MW λ-carrageenan (AD-C-L) for six weeks. Rats to receive saline infusion (Normal-Con) had an AD-Con diet. The AD-F-L group showed an improved memory function, which manifested as an enhanced Y-maze spontaneous alternation test, water maze, and passive avoidance tests, similar to the Normal-Con group. AD-F-L also potentiated hippocampal insulin signaling and increased the expression of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the hippocampus. AD-C-L improved the memory function mainly by increasing the BDNF content. AD-F-H and AD-C-H did not improve the memory function. Compared to AD-Con, the ascending order of AD-C-H, AD-F-H, AD-C-L, and AD-F-L increased insulin signaling by enhancing the pSTAT3®pAkt®pGSK-3ß pathway. AD-F-L improved glucose tolerance the most. Compared to AD-CON, the AD-F-L treatment increased the serum acetate concentrations and compensated for the defect of cerebral glucose metabolism. AD-Con increased Clostridium, Terrisporobacter and Sporofaciens compared to Normal-Con, and AD-F-L and AD-C-L increased Akkermentia. In conclusion, AD-F-L and AD-C-L alleviated the memory function in the rats with induced AD symptoms by modulating.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Carrageenan/metabolism , Dietary Supplements , Disease Models, Animal , Hippocampus/metabolism , Insulin/metabolism , Memory Disorders/complications , Metagenome , Polysaccharides , Rats
7.
J Med Food ; 25(4): 355-366, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35438554

ABSTRACT

We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Houttuynia , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , NF-kappa B , Network Pharmacology , Quercetin , RNA-Dependent RNA Polymerase , SARS-CoV-2
8.
J Agric Food Chem ; 68(36): 9690-9696, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32794755

ABSTRACT

Pumpkins (Cucurbita moschata; Cucurbitaceae) are the rich source of nutrients and valued for their biologically active substances to be used for the treatment of several diseases. The contents, composition, and conformation of starch are the significant quality traits of C. moschata. Two germplasms were targeted for analysis regarding the taste difference. Results indicated that the total starch contents and amylose/amylopectin ratio were high in CMO-X as compared to CMO-E during each fruit development stage. Scanning electron microscopy and transmission electron microscopy observations revealed that smooth surface starch granules fused together to enhance the starch accumulation. For a comparison of fruit development in CMO-E and CMO-X, the putative pathway for starch metabolism was developed and homologs were identified for each key gene involved in the pathway. GBSS and SBE were correlated with the difference in the amylose/amylopectin ratio of CMO-E and CMO-X. Conclusively, the developmental regulation of genes associated with starch accumulation can be considered as an important factor for the determination of fruit quality.


Subject(s)
Cucurbita/chemistry , Fruit/growth & development , Plant Extracts/chemistry , Starch/chemistry , Cucurbita/growth & development , Fruit/chemistry
9.
J Food Sci ; 83(4): 966-974, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29524221

ABSTRACT

A novel technique of ultrasound-assisted freeze-thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze-thaw cycles. Samples with freeze-thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10-9 m2 /s). This result was further supported by low-field nuclear magnetic resonance (LF-NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5- and 10-fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products.


Subject(s)
Food Handling/methods , Lepidium/chemistry , Plant Preparations/chemistry , Dietary Proteins/analysis , Freezing , Humans , Plant Extracts/biosynthesis , Ultrasonic Waves , Water
10.
Food Chem ; 239: 56-61, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28873605

ABSTRACT

The thermal processing of black garlic was simulated. Fresh garlic was incubated at 55°C with 80% humidity and sampled every 5 or 10days. The changes in relevant products were as follows: the fructan content was decreased by 84.79%, and the fructose content was increased by 508.11%. The contents of Maillard reaction intermediate products were first increased and then decreased. The colour of garlic gradually became dark and the pH decreased from 6.13 to 4.00. By analyzing these changes, the mechanism of black garlic formation and the changes on the Maillard reaction were revealed. The sweetness of black garlic resulted mainly from the fructose that was produced, and the black colour was largely due to the Maillard reaction between fructose/glucose and amino acids. An understanding of this process is useful to explain the formation mechanism of black garlic and could lead to better control of the quality of black garlic.


Subject(s)
Garlic , Amino Acids , Fructose , Glucose , Maillard Reaction
11.
J Food Sci ; 81(7): C1662-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27300762

ABSTRACT

Black garlic is produced through thermal processing and is used as a healthy food throughout the world. Compared with fresh garlic, there are obvious changes in the color, taste, and biological functions of black garlic. To analyze and explain these changes, the contents of water-soluble sugars, fructan, and the key intermediate compounds (Heyns and Amadori) of the Maillard reaction in fresh raw garlic and black garlic were investigated, which were important to control and to evaluate the quality of black garlic. The results showed that the fructan contents in the black garlics were decreased by more than 84.6% compared with the fresh raw garlics, which translated into changes in the fructose and glucose contents. The water-soluble sugar content was drastically increased by values ranging from 187.79% to 790.96%. Therefore, the taste of the black garlic became very sweet. The sucrose content in black garlic was almost equivalent to fresh garlic. The Amadori and Heyns compounds were analyzed by HPLC-MS/MS in multiple reaction monitoring mode using the different characteristic fragment ions of Heyns and Amadori compounds. The total content of the 3 main Amadori and 3 Heyns compounds in black garlic ranged from 762.53 to 280.56 µg/g, which was 40 to 100-fold higher than the values in fresh raw garlic. This result was significant proof that the Maillard reaction in black garlic mainly utilized fructose and glucose, with some amino acids.


Subject(s)
Fructose/analysis , Garlic/chemistry , Glucose/analysis , Maillard Reaction , Sucrose/analysis , Amino Acids/analysis , Carbohydrates , Food Handling , Fructans/analysis , Hot Temperature , Humans , Tandem Mass Spectrometry , Taste
12.
J Nutr Biochem ; 26(8): 808-17, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25940980

ABSTRACT

The beneficial effects of garlic (Allium sativum) consumption in treating human diseases have been reported worldwide over a long period of human history. The strong antioxidant effect of garlic extract (GE) has also recently been claimed to prevent cancer, thrombus formation, cardiovascular disease and some age-related maladies. Using Caenorhabditis elegans as a model organism, aqueous GE was herein shown to increase the expression of longevity-related FOXO transcription factor daf-16 and extend lifespan by 20%. By employing microarray and proteomics analysis on C. elegans treated with aqueous GE, we have systematically mapped 229 genes and 46 proteins with differential expression profiles, which included many metabolic enzymes and yolky egg vitellogenins. To investigate the garlic components functionally involved in longevity, an integrated metabolo-proteomics approach was employed to identify metabolites and protein components associated with treatment of aqueous GE. Among potential lifespan-promoting substances, mannose-binding lectin and N-acetylcysteine were found to increase daf-16 expression. Our study points to the fact that the lifespan-promoting effect of aqueous GE may entail the DAF-16-mediated signaling pathway. The result also highlights the utility of metabolo-proteomics for unraveling the complexity and intricacy involved in the metabolism of natural products in vivo.


Subject(s)
Garlic/chemistry , Longevity/drug effects , Metabolomics/methods , Plant Extracts/pharmacology , Proteomics/methods , Acetylcysteine/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromatography, Liquid , Cloning, Molecular , Down-Regulation , Evolution, Molecular , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mannose-Binding Lectin/metabolism , Molecular Sequence Data , Signal Transduction , Tandem Mass Spectrometry , Up-Regulation , Vitellogenins/genetics , Vitellogenins/metabolism
13.
Article in English | MEDLINE | ID: mdl-25694788

ABSTRACT

This research was designed to investigate the protective effects of TSPN on steroid-induced avascular necrosis of the femoral head (ANFH) and the likely mechanisms of those effects. As an in vivo study, TSPN was shown to be protective against steroid-induced ANFH due to the upregulation of VEGF-A. Furthermore, TSPN attenuated the apoptosis of osteocytes and reduced the expression of Caspase-3 relative to the model group. As an in vitro study, TSPN exerted a concentration-dependent protective effect against apoptosis in MC3T3-E1 cells. Moreover, TSPN (at a dose of 100 µg/mL) significantly reversed the dexamethasone-induced augmentation of Caspase-3 expression and activity. Therefore, our study demonstrated that TSPN had a protective effect against steroid-induced ANFH that was related to the upregulation of VEGF-A and the inhibition of apoptosis and Caspase-3 activation.

14.
Opt Express ; 19(23): 22882-91, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109166

ABSTRACT

We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.


Subject(s)
Nanostructures/chemistry , Surface Plasmon Resonance/methods , Aluminum Oxide/chemistry , Antibodies, Immobilized , Antigens/analysis , Antigens/immunology , C-Reactive Protein/analysis , C-Reactive Protein/immunology , Electrodes , Gold/chemistry , Humans , Membranes, Artificial , Microscopy, Atomic Force , Nanostructures/ultrastructure , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL