Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(22): e2300758, 2023 08.
Article in English | MEDLINE | ID: mdl-37202595

ABSTRACT

Mitochondrial dysfunction of neurons is the core pathogenesis of incurable Parkinson's disease (PD). It is crucial to ameliorate the mitochondrial dysfunction of neurons for boosting the therapy of PD. Herein, the remarkable promotion of mitochondrial biogenesis to ameliorate mitochondrial dysfunction of neurons and improve the treatment of PD by using mitochondria-targeted biomimetic nanoparticles, which are Cu2- x Se-based nanoparticles functionalized with curcumin and wrapped with DSPE-PEG2000 -TPP-modified macrophage membrane (denoted as CSCCT NPs), is reported. These nanoparticles can efficiently target mitochondria of damaged neurons in an inflammatory environment, and mediate the signaling pathway of NAD+ /SIRT1/PGC-1α/PPARγ/NRF1/TFAM to alleviate 1-methyl-4-phenylpyridinium (MPP+ )-induced neuronal toxicity. They can reduce the mitochondrial reactive oxygen species, restore mitochondrial membrane potential (MMP), protect the integrity of mitochondrial respiratory chain, and ameliorate mitochondrial dysfunction via promoting mitochondrial biogenesis, which synergistically improve the motor disorders and anxiety behavior of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. This study demonstrates that targeting mitochondrial biogenesis to ameliorate mitochondrial dysfunction has a great potential in the treatment of PD and mitochondria-related diseases.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/therapy , Organelle Biogenesis , Biomimetics , Mitochondria/metabolism , Neurons/metabolism , 1-Methyl-4-phenylpyridinium/metabolism
2.
Oncol Rep ; 33(3): 1284-90, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25522911

ABSTRACT

Euphorbia fischeriana Steud is a traditional Chinese Medicine that is known to possess a variety of anticarcinogenic properties. However, the bioactive constituents in Euphorbia fischeriana Steud and molecular mechanisms underlying this action in cancer treatment remain poorly understood. The present study investigated the chemotherapy activity and molecular targets of Ethyl gallate, which is identified as the major constituent extracted from the roots of Euphorbia fischeriana Steud in breast cancer cell lines in vitro. The results showed Ethyl gallate obviously decreased cell proliferation in MDA-MB-231 and MCF-7 cells in a dose- and time-dependent manner. Highly invasive MDA-MB-231 cells were found to be highly sensitive to treatment. Furthermore, significantly decreased metastatic potential of highly metastatic MDA-MB­231 cells by Ethyl gallate was identified via the inhibition of cell motility using invasion and migration through a polyethylene terephthalate membrane. Ethyl gallate treatment decreased the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 by the downregulation of mRNA levels using RT-PCR, enzymes that are critical to tumor invasion. Treatment with Ethyl gallate decreased phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-κB (NF-κB) activation in MDA-MB-231 cells. These results indicate that Ethyl gallate suppresses proliferation and invasion in human breast cancer cells by modulating the PI3K/Akt pathway, which may contribute to inhibiting their downstream targets such as NF-κB p-65, Bcl-2/Bax, and mRNA levels of MMP-2 and MMP-9 in breast cancer cells. Thus, the present study shed new light on Ethyl gallate, an important bioactive constituent of Euphorbia fischeriana Steud, in human breast cancer treatment. The findings may provide basal theories for wide therapeutic application in human breast cancer.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Gallic Acid/analogs & derivatives , Neoplasm Invasiveness/pathology , Transcription Factor RelA/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Euphorbia/metabolism , Female , Gallic Acid/pharmacology , Humans , MCF-7 Cells , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/biosynthesis , Signal Transduction/drug effects , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL