Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Ethnopharmacol ; 329: 118161, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599474

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY: To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS: AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aß25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS: KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION: KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Neurons , Peptide Fragments , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Rats , Neurons/drug effects , Disease Models, Animal , Fecal Microbiota Transplantation , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Morris Water Maze Test/drug effects
2.
Food Chem ; 446: 138891, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38432135

ABSTRACT

Phyllanthus emblica Linn is not only an edible fruit with high nutritional value, but also a medicinal plant with multiple bioactivities. It is widely used in clinical practice with functions of clearing heat, cooling blood, digesting food, strengthening stomach, promoting fluid production, and relieving cough. This review summarized a wide variety of phytonutrients, including nutritional components (mineral elements, amino acids, vitamins, polysaccharides, unsaturated free fatty acids) and functional components (phenolic acids (1-34), tannins (35-98), flavonoids (99-141), sterols (142-159), triterpenoids (160-175), lignans (176-183), alkaloids (184-197), alkanes (198-212), aromatic micromolecules (213-222), other compounds (223-239)). The isolated compounds and the various extracts of P. emblica Linn presented a diverse spectrum of biological activities such as anti-oxidant, anti-cancer, anti-inflammatory, anti-bacterial, hepatoprotective, hypoglycemic, anti-atherosclerosis, neuroprotective, enhancing immunity, anti-fatigue, anti-myocardial fibrosis. The quality markers of P. emblica Linn were predicted and analyzed based on traditional medicinal properties, traditional efficacy, plant genealogy and chemical component characteristics, biogenic pathway of chemical components, measurability of chemical components, transformation characteristics of polyphenolic components, homologous characteristics of medicine and food, compound compatibility environment, and clinical applications. This review also summarized and prospected applications of P. emblica Linn in beverages, preserved fruits, fermented foods, etc. However, the contents of mechanism, structure-activity relationship, quality control, toxicity, extraction, processing of P. emblica Linn are not clear, and are worth further studies in the future.


Subject(s)
Botany , Phyllanthus emblica , Plants, Medicinal , Phyllanthus emblica/chemistry , Plant Extracts/chemistry , Phytochemicals , Ethnopharmacology
3.
Front Pharmacol ; 12: 756276, 2021.
Article in English | MEDLINE | ID: mdl-34887758

ABSTRACT

In recent years, drug-induced liver injury (DILI) has become an important issue of public health. Euodiae Fructus (EF) is a commonly used herb with mild toxicity in clinic, and large doses of EF can cause significant liver damage. Licorice processing might reduce the hepatotoxicity of CEF (crude EF), but up to now, studies on the hepatotoxicity of EF have been hardly reported, let alone its material basis and mechanism of detoxification by licorice processing. This work firstly established a stomach excess-cold syndrome animal model induced by intragastric administration of cold Zhimu (Anemarrhena asphodeloides Bge). Secondly, multiple approaches and indexes were used to evaluate the hepatotoxicity of the drugs in the rats including general behavior, biochemical analysis, protein expressions, and histopathological examination. Thirdly, the hepatotoxicity of three doses of three CEF and LPEF (licorice-processed EF) extracts was systematically investigated, and the hepatotoxicity differences were analyzed and compared comprehensively among the three extracts, three doses, and CEF and LPEF. Finally, the connotation of detoxification of EF by licorice processing was preliminarily discussed according to the changes in toxic components after processing, toxicological characteristics, and TCM (traditional Chinese medicine) theory. All extracts of EF were found to have dose-dependent hepatotoxicity, and the toxicity was in the descending order of water extract, ethanol extract, and volatile oil. The hepatotoxic mechanism of EF may be related to peroxidation damage, inflammatory factor, and mitochondrial injury. The CEF hepatotoxicity can be significantly reduced by licorice processing. EF should be safe for short-term use at pharmacopeial dose under the guidance of the TCM theory. The detoxification mechanism is probably related to the reduction of toxic components and antagonistic action of licorice.

4.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5291-5303, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738432

ABSTRACT

Aurantii Fructus is a commonly used qi-regulating medicinal herb in China. Both traditional Chinese medicine theory and modern experimental research demonstrate that Aurantii Fructus has dryness effect, the material basis of which remains unclear. In recent years, spectrum-effect relationship has been widely employed in the study of active ingredients in Chinese medicinal herbs, the research ideas and methods of which have been constantly improved. Based on the idea of spectrum-effect study, the ultra-high perfor-mance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) fingerprints of different fractions of Aurantii Fructus extract were established for the identification of total components. Then, the dryness effects of the fractions on normal mice and gastrointestinal motility disorder(GMD) rats were systematically compared. Finally, principal component analysis(PCA), Pearson bivariate correlation analysis and orthogonal partial least squares analysis(OPLS) were integrated to identify the dryness components of Aurantii Fructusextract. The results showed that narirutin, naringin, naringenin, poncirin, oxypeucedanin, and eriodictyol-7-O-glucoside had significant correlations with and contributed to the expression of AQP2 in kidney, AQP3 in colon, and AQP5 in submandibular gland, which were the main dryness components in Aurantii Fructus.


Subject(s)
Citrus , Drugs, Chinese Herbal , Animals , Aquaporin 2 , Chromatography, High Pressure Liquid , Gastrointestinal Motility , Medicine, Chinese Traditional , Mice , Rats
5.
J Ethnopharmacol ; 279: 114366, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34181960

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nowadays, gastrointestinal motility disorders (GMD) have reduced the quality of people's daily life worldwide, but there is still a lack of effective western medicine treatment. Fructus aurantii (FA), a representative regulating-qi herbal medicine, has been widely used to treat GMD in China for thousands of years, but it is not clear that which specific components contribute to the efficacy. AIM OF THE STUDY: The efficacy differences of various fractions of FA on normal mice and GMD rats were compared, so as to find out the main effective fraction of FA, and to screen the main regulating-qi components based on spectrum-effect relationship and multivariate statistical analysis. MATERIALS AND METHODS: The fingerprints of different fractions of FA were established and main compounds were identified with UHPLC-Q-TOF/MS technique. The promoting gastrointestinal motility activities of FA were evaluated by defecation test, gastric emptying and intestinal propulsion test in mice, and further investigated according to the biochemical analysis of 5-HT, SP, MLT, GAS and VIP in GMD rats' plasma. One-way ANOVA was used to find out the difference of efficacy. The active components were screened through spectrum-effect relationship with PCA-X, Pearson bivariate correlation analysis and OPLS analysis. CONCLUSIONS: Ethyl acetate fraction is the main active fraction, and nine compounds are the major regulating-qi components. The developed spectrum-effect analysis can be used for the screening of bioactive components in natural products with high accuracy and reliability.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastric Emptying/drug effects , Gastrointestinal Motility/drug effects , Animals , Animals, Outbred Strains , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Male , Mass Spectrometry , Mice , Multivariate Analysis , Rats , Rats, Sprague-Dawley , Reproducibility of Results
6.
ACS Omega ; 6(7): 4551-4561, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33644563

ABSTRACT

Ferulic acid, a hydroxycinnamic acid, is abundant in vegetables, grains, and medicinal plants. Emerging evidence suggests that ferulic acid may exert beneficial effects against colorectal cancer. However, the anticancer activity of ferulic acid is relatively low, and its metabolism after oral administration is largely unknown. In this study, mimicking the enteric environment, human intestinal microflora and commercial probiotics were used to metabolize ferulic acid to its metabolites, and their anticancer activities were evaluated. Ferulic acid can be biotransformed to 4-vinylguaiacol (2-methoxy-4-vinylphenol), and the contents of ferulic acid and 4-vinylguaiacol in bio-transformed extracts were determined by high-performance liquid chromatography (HPLC). Using the chemotherapy-sensitive cell line HCT-116 and the chemo-resistant cell line HT-29, the cell proliferation was determined by the modified trichrome stain assay. The cell cycle and induction of apoptosis were assayed using flow cytometry. HPLC data showed that there was a marked transformation from ferulic acid to 4-vinylguaiacol, and the conversion rates of intestinal microflora and four probiotics were from 1.3 to 36.8%. Both ferulic acid and 4-vinylguaiacol possessed dose- and time-related anticancer activities on the two cell lines, while 4-vinylguaiacol showed more potent effects than ferulic acid. Interestingly, 4-vinylguaiacol exhibited significantly higher antiproliferative effects on the HT-29 cell line than that on HCT-116. The IC50 of the metabolite 4-vinylguaiacol on HT-29 cells was 350 µM, 3.7-fold higher than its parent compound. The potential of cancer cell growth inhibition of 4-vinylguaiacol was mediated by cell cycle arrest at the G1 phase and induction of apoptosis. Data from this study indicate that the oral administration of ferulic acid offers a promising approach to increase its anticancer activity through gut microbial conversion to 4-vinylguaiacol, and the biotransformation could also be achieved by selected commercial probiotics. 4-Vinylguaiacol is a potential anticancer metabolite from ferulic acid for chemotherapy-resistant colon cancer cells.

7.
J Ethnopharmacol ; 269: 113721, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33359001

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Aurantii (FA) is a Chinese herbal medicine commonly used in clinical practice to improve gastrointestinal motility, treat dyspepsia, and relieve constipation. More than 20 processing methods of FA have been recorded, among which FA stir-baked with bran is the earliest, most time consuming, and the most popular one. Raw FA has a strong ability to promote qi-moving and has middle-energizer-soothing effects; therefore, it is often used to relieve hypochondrium distension and pain, and to relax the stagnation of the liver Qi. FA stir-baked with bran is more effective in nourishing the stomach and curing indigestion. AIM OF THE STUDY: In this study, the chemical composition and differences between raw FA and FA stir-baked with bran were systematically compared. The chemical components that increased after stir-baking FA and bran were separated and their pharmacodynamic characteristics were determined. Lastly, the processing mechanism of FA was further explained. MATERIALS AND METHODS: Twelve main chemicals in raw FA and FA stir-baked with bran were compared using high-performance liquid chromatography (HPLC). The main differential components were identified, separated, purified, and then analyzed using pharmacodynamic tests. The intestine-pushing test, in vitro smooth muscle test, and in vitro acetylcholinesterase (AchE) activity test in mice were performed to explain the mechanism of auraptene in improving gastrointestinal motility. RESULTS: Using HPLC, the primary chemical that differed between raw FA and FA stir-baked with bran was identified as auraptene. The processed FA was extracted, separated, and purified to obtain pure auraptene. The intestine-pushing test in mice showed that low (0.6 mg·kg-1) and medium doses (1.2 mg·kg-1) of auraptene could promote peristalsis of the small intestine, whereas a high dose (2.4 mg·kg-1) inhibited peristalsis. In vitro studies on the smooth muscle of mice showed that a low dose of auraptene (0.2 mmol·L-1, 10-800 µL) could promote contraction, whereas a high dose (0.2 mmol·L-1, >1000 µL) had the opposite effect. Auraptene has a mechanism of action similar to that of the acetylcholinesterase inhibitor, neostigmine. Additionally, auraptene could inhibit AchE activity in vitro. CONCLUSIONS: Auraptene is the main chemical constituent that differs between raw FA and FA stir-baked with bran. Pharmacodynamic tests showed that auraptene has a cholinergic effect, by virtue of its role as an acetylcholinesterase inhibitor. Moreover, auraptene could dually regulate the gastrointestinal smooth muscle. Auraptene was present in low levels and its content varied in FA stir-baked with bran, depending on the origin and source of FA, and the treatment procedures it was subjected to. In the Chinese Pharmacopoeia, the recommended dose of FA stir-baked with bran is a low dose of 3-10 g, which effectively promotes small-intestinal peristalsis. The mechanism of action is attributed to an increase in the relative content of acetylcholine by the inhibition of AchE activity to promote gastrointestinal motility. The increased levels of auraptene in FA stir-baked with bran are the main reason and the primary purpose for the change in its medicinal properties. This technique, therefore, has potential to be used as one of the main processing mechanisms of raw FA.


Subject(s)
Citrus/chemistry , Coumarins/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Fruit/chemistry , Acetylcholinesterase/drug effects , Animals , Chromatography, High Pressure Liquid , Coumarins/isolation & purification , Coumarins/therapeutic use , Dietary Fiber , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/therapeutic use , Hot Temperature , Intestine, Small/drug effects , Mice , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Peristalsis/drug effects , Rats, Sprague-Dawley
8.
J Agric Food Chem ; 68(25): 6835-6844, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32449854

ABSTRACT

Panax notoginseng saponins (PNSs) are the major health-beneficial components of P. notoginseng with very low oral bioavailability, which could be biotransformed by gut microbiota in vitro. However, in vivo biotransformation of PNS mediated by gut microbiota is not well known. This study aimed to characterize the in vivo metabolic profiles of PNS mediated by gut microbiota. The saponins and yielded metabolites in rat feces were identified and relatively quantified by ultra-performance liquid chromatography tandem/quadrupole time-of-flight mass spectrometry. Seventy-three PNS metabolites had been identified in the normal control group, but only 11 PNS metabolites were determined in the pseudo germ-free (GF) group. In addition, the main biotransformation pathway of PNS metabolism was hydrolytic and dehydration reactions. The results indicated that a significant metabolic difference was observed between the normal control group and pseudo GF group, while gut microbiota played a profound role in the biotransformation of PNS in vivo.


Subject(s)
Bacteria/metabolism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Gastrointestinal Microbiome , Panax notoginseng/metabolism , Saponins/chemistry , Saponins/metabolism , Animals , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Biotransformation , Feces/microbiology , Male , Panax notoginseng/chemistry , Rats , Rats, Sprague-Dawley
9.
J Ginseng Res ; 44(2): 282-290, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32148410

ABSTRACT

BACKGROUND: Ginseng is a commonly used herbal medicine in treating various medical conditions. Chronic gut inflammation is a recognized factor for the development of colorectal cancer (CRC). In this project, Asian ginseng berry polysaccharide preparations were used to assess their effects on CRC and related immune regulation mechanisms. METHODS: Ginseng berry polysaccharide extract (GBPE) and purified ginseng berry polysaccharide portion (GBPP) were used to evaluate their activities on human HCT-116 and HT-29 CRC cell proliferation. Interleukin-8 secretion analysis was performed on HT-29 cells. Naive CD4 cell isolation and T-helper cell differentiation were performed and determined using flow cytometry for Th1 and Treg in addition to cell cycle and apoptotic investigation. RESULTS: GBPE and GBPP significantly inhibited interleukin-8 secretion and cancer cell proliferation, inhibited CD4+IFN-γ+ cell (Th1) differentiation, and decreased CD4+FoxP3+ cell (Treg) differentiation. Compared to the GBPE, GBPP showed more potent antiinflammatory activities on the malignant cells. This is consistent with the observation that GBPP can also inhibit Th1-cell differentiation better, suggesting that it has an important role in antiinflammation, whereas Treg cells hinder the body's immune response against malignancies. Supported by cell cycle and apoptosis data, GBPE and GBPP, at various degrees, remarkably enhanced the anticancer activities of 5-fluorouracil. CONCLUSION: Data from this project suggested that Asian ginseng berry potentially has clinical utility in managing enteric inflammation and suppressing CRC through immunomodulation mechanisms.

10.
Molecules ; 24(24)2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31847475

ABSTRACT

In this study, a combination of quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and linear trap quadrupole orbitrap mass spectrometry (LTQ-Orbitrap-MS) was performed to investigate the fragmentation behaviors of prenylated flavonoids (PFs) from Artocarpus plants. Fifteen PFs were selected as the model molecules and divided into five types (groups A-E) according to their structural characteristics in terms of the position and existing form of prenyl substitution in the flavone skeleton. The LTQ-Orbitrap-MSn spectra of the [M - H]- ions for these compounds provided a wealth of structural information on the five different types of compounds. The main fragmentation pathways of group A were the ortho effect and retro Diels-Alder (RDA), and common losses of C4H10, CO, and CO2. The compounds in group B easily lose C6H12, forming a stable structure of a 1,4-dienyl group, unlike those in group A. The fragmentation pathway for group C is characterized by obvious 1,4A-, 1,4B- cracking of the C ring. The diagnostic fragmentation for group D is obvious RDA cracking of the C ring and the successive loss of CH3 and H2O in the LTQ-Orbitrap-MSn spectra. Fragmentation with successive loss of CO or CO2, ·CH3, and CH4 in the LTQ-Orbitrap-MSn spectra formed the characteristics of group E. The summarized fragmentation rules were successfully exploited to identify PFs from Artocarpus heterophyllus, a well-known Artocarpus plant, which led to the identification of a total of 47 PFs in this plant.


Subject(s)
Artocarpus/chemistry , Flavonoids/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Models, Molecular , Molecular Structure
11.
Am J Chin Med ; 47(6): 1345-1363, 2019.
Article in English | MEDLINE | ID: mdl-31495181

ABSTRACT

Panax ginseng exerts good neuroprotective activity at the cell and animal level, but the specific bioactive compounds and action mechanism are needed to be investigated, verified, and confirmed. In this work, affinity ultrafiltration (AUF), UPLC-QTOF-MS, and molecular docking were integrated into one strategy to screen, identify, and evaluate the bioactive compounds in ginseng at the molecular level. Three biological macromolecules (AChE, MAO-B, and NMDA receptor) were selected as the target protein for AUF-MS screening for the first time, and 16 potential neuroactive compounds were found with suitable binding degree. Then, the bioactivity of ginseng and its components were evaluated by AChE-inhibitory test and DPPH assay, and the data indicate that ginseng extract and the screened compounds have good neuroactivity. The interaction between the three targets and the screened compounds was further analyzed by molecular docking, and the results were consistent with a few discrepancies in comparison with the AUF results. Finally, according to the corresponding relation between component-target-pathway, the action mechanism of ginseng elucidated that ginseng exerts a therapeutic effect on AD through multiple relations of components, targets, and pathways, which is in good accordance with the TCM theory.


Subject(s)
Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical/methods , Molecular Docking Simulation , Neuroprotective Agents , Panax/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry , Ultrafiltration , Alzheimer Disease/drug therapy , Animals , Antioxidants , Cholinesterase Inhibitors , Humans , Molecular Targeted Therapy , Monoamine Oxidase , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Receptors, N-Methyl-D-Aspartate
12.
Int Immunopharmacol ; 64: 246-251, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30212750

ABSTRACT

Inflammatory bowel disease (IBD) is a significant public health problem in the United States. Abdominal pain is a major complaint among individuals with IBD. Successful IBD management not only controls enteric inflammation, but also reduces abdominal discomfort. Recently, increased attention has been focused on alternative strategies for IBD management. HPLC/Q-TOF-MS analysis was employed to evaluate the intestinal microbiome's biotransformation of parent American ginseng compounds into their metabolites. Using a DSS mouse model, the effects of American ginseng microbial metabolites on chemically induced colitis was investigated with disease activity index and histological assessment. Expressions of inflammatory cytokines were determined using real-time PCR and ELISA. Abdominal pain was evaluated using the von Frey filament test. After the gut microbiome's biotransformation, the major metabolites were found to be the compound K and ginsenoside Rg3. Compared with the DSS animal group, American ginseng treatment significantly attenuated experimental colitis, as supported by the histological assessment. The enteric microbiome-derived metabolites of ginseng significantly attenuated the abdominal pain. American ginseng treatment significantly reduced gut inflammation, consistent with pro-inflammatory cytokine level changes. The gut microbial metabolite compound K showed significant anti-inflammatory effects even at low concentrations, compared to its parent ginsenoside Rb1. American ginseng intestinal microbial metabolites significantly reduced chemically-induced colitis and abdominal pain, as mediated by the inhibition of pro-inflammatory cytokine expression. Intestinal microbial metabolism plays a critical role in American ginseng mediated colitis management.


Subject(s)
Abdominal Pain/drug therapy , Colitis/drug therapy , Gastrointestinal Microbiome , Panax/metabolism , Plant Extracts/therapeutic use , Animals , Colitis/chemically induced , Colitis/immunology , Cytokines/analysis , Dextran Sulfate , Ginsenosides/therapeutic use , Humans , Male , Mice , Mice, Inbred C57BL
13.
Zhongguo Zhong Yao Za Zhi ; 42(11): 2123-2130, 2017 Jun.
Article in Chinese | MEDLINE | ID: mdl-28822158

ABSTRACT

The chemical constituents of Lagotis brevituba were rapidly determined and analyzed by using ultra performance liquid chromatography tandem quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) method, providing material basis for the clinical application of L. brevituba. The separation was performed on UPLC YMC-Triart C18 (2.1 mm×100 mm, 1.9 µm) column, with acetonitrile-water containing 0.2% formic acid as mobile phase for gradient elution. The flow rate was 0.4 mL•min-1 gradient elution and column temperature was 40 ℃, the injection volume was 2 µL. ESI ion source was used to ensure the data collected in a negative ion mode. The chemical components of L. brevituba were identified through retention time, exact relative molecular mass, cleavage fragments of MS/MS and reported data. The results showed that a total of 22 compounds were identified, including 11 flavones, 6 phenylethanoid glycosides, 1 iridoid glucosides, and 4 organic acid. The UPLC-Q-TOF-MS/MS method could fast identify the chemical components of L. brevituba, providing valuable information about L. brevituba for its clinical application.


Subject(s)
Drugs, Chinese Herbal/analysis , Plantaginaceae/chemistry , Chromatography, High Pressure Liquid , Flavones/analysis , Glycosides/analysis , Iridoid Glucosides/analysis , Tandem Mass Spectrometry
14.
Molecules ; 22(8)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28749432

ABSTRACT

Euodia rutaecarpa is a common traditional Chinese medicine (TCM) in clinical practice, having the ability to suppress pain and cease coughing; however, with the increasing reports showing that it is toxic, particularly hepatotoxic, the concerns raised by what cause its toxicity is growing. In the current study, an analysis method based on the spectrum effect has been employed to screen the major hepatotoxic components in Euodia rutaecarpa so that the toxic material's basis would be elucidated. A fingerprinting method of the Euodia rutaecarpa extracts (which were petroleum ether, chloroform, ethyl acetate, n-butanol, and water) using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF/MS) has been developed. Orthogonal partial least squares (OPLS) was used to establish the spectrum-toxicity relationship with the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mice serum as evaluation indices for liver injury. The UHPLC-MS fingerprint was established and the OPLS analytical results suggested that coniferin, 1-methyl-2-undecyl-4(1H)-quinolone, 1-methyl-2-[(6Z,9Z,12E)-pentadeca triene]-4(1H)-quinolone, evocarpine, 1-methyl-2-[(Z)-7-tridecenyl]-4(1H)-quinolone, dihydroevocarpine, and 1-methyl-2-tetradecy-4-(1H)-quinolone probably associated with the hepatotoxicity of Euodia rutaecarpa. This paper offered considerable methods and insight for the fundamental research of the toxic material basis of similar toxic TCMs.


Subject(s)
Chromatography, High Pressure Liquid/methods , Evodia/chemistry , Mass Spectrometry/methods , Plant Extracts/analysis , Plant Extracts/toxicity , Animals , Aspartate Aminotransferases/blood , Body Weight/drug effects , Female , Least-Squares Analysis , Liver/drug effects , Liver/pathology , Male , Mice , Organ Size/drug effects
15.
BMC Complement Altern Med ; 17(1): 107, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28187732

ABSTRACT

BACKGROUND: Aristolochiae Fructus (AF) and honey-fried Aristolochiae Fructus (HAF) have been used in China for a long time as anti-tussive and expectorant drugs. Few clinical cases have been reported to be associated with the toxicity of AF and HAF, although relatively high amounts of aristolochic acids (AAs) have been found in them. Our previous experiments have verified from the chemical changes and from traditional toxicology that honey-processing can significantly reduce the toxicity of AF. To further elucidate the detoxification mechanism of honey-processing, comparative pharmacokinetics of AAs in AF and HAF are performed in this study. METHODS: An HPLC-MS/MS (high-performance liquid chromatography-tandem mass spectrometry) method was developed and validated for the determination of AA I, AA II, AA C, AA D and 7-OH AA I in rat plasma. The multi-component pharmacokinetics of AAs in AF and HAF extracts were investigated after the oral administration of three doses to rats. The relative pharmacokinetic parameters were compared systematically. RESULTS: The five AAs shared a similar nonlinear PK (pharmacokinetic) process. They involve rapid absorption and elimination, and they were fit into a two-compartmental open model. Some significant pharmacokinetic differences were observed between the AF and HAF groups: the C max and AUC values of AA I and AA II in the AF groups were much higher than those of the HAF groups. CONCLUSIONS: Honey-frying technology can reduce the toxicity of AF by significantly decreasing the absorption of AA I and AA II. The PK parameters obtained in this work could provide valuable references for the toxicity research and clinical use of Aristolochiaceae herbs, including AF and HAF. Process diagram of comparative pharmacokinetics study.


Subject(s)
Aristolochia/chemistry , Aristolochic Acids/pharmacokinetics , Fruit/chemistry , Honey , Plant Extracts/pharmacokinetics , Administration, Oral , Animals , Aristolochic Acids/blood , Aristolochic Acids/chemistry , Limit of Detection , Linear Models , Male , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results
16.
Fitoterapia ; 117: 133-137, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28163073

ABSTRACT

Four new flavonoids, artoheteroids A-D (1-4), together with six known ones (5-10), were isolated from the roots of Artocarpus heterophyllus. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR, UV, IR, CD, and HR-ESI-MS. All isolated compounds were screened for their inhibitory abilities against cathepsin K (CatK). Among them, compounds 1-2, 4-6, and 10 were found to have suppression capabilities against CatK with IC50 values ranging from 1.4 to 93.9µM.


Subject(s)
Artocarpus/chemistry , Cathepsin K/antagonists & inhibitors , Flavonoids/chemistry , Plant Roots/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Flavonoids/isolation & purification , Molecular Structure
17.
Article in English | MEDLINE | ID: mdl-27776327

ABSTRACT

Ginseng is one of the most widely used natural medicines in the world. Recent studies have suggested Panax ginseng has a wide range of beneficial effects on aging, central nervous system disorders, and neurodegenerative diseases. However, knowledge about the specific bioactive components of ginseng is still limited. This work aimed to screen for the bioactive components in Panax ginseng that act against neurodegenerative diseases, using the target cell-based bioactivity screening method. Firstly, component analysis of Panax ginseng extracts was performed by UPLC-QTOF-MS, and a total of 54 compounds in white ginseng were characterized and identified according to the retention behaviors, accurate MW, MS characteristics, parent nucleus, aglycones, side chains, and literature data. Then target cell-based bioactivity screening method was developed to predict the candidate compounds in ginseng with SH-SY5Y cells. Four ginsenosides, Rg2, Rh1, Ro, and Rd, were observed to be active. The target cell-based bioactivity screening method coupled with UPLC-QTOF-MS technique has suitable sensitivity and it can be used as a screening tool for low content bioactive constituents in natural products.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical/methods , Ginsenosides/chemistry , Ginsenosides/pharmacology , Mass Spectrometry/methods , Neurons/drug effects , Panax/chemistry , Cell Line , Ginsenosides/isolation & purification , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology
18.
Article in English | MEDLINE | ID: mdl-24583199

ABSTRACT

Based on cloud-point extraction (CPE), a high performance liquid chromatography method (HPLC) was developed and validated for the determination of aristolochic acids (AAs) in rat plasma after oral administration of Aristolochiae Fructus (AF). Non-ionic surfactant Genapol X-080, an environmentally friendly solvent, was used for the micelle-mediated extraction. Various influencing factors on CPE process were investigated and optimized. AAs were extracted from rat plasma after adding 1ml of 4.5% (v/v) surfactant in the presence of 0.2mol/l HCl and 20mg NaCl, and the incubation temperature and time were 50°C and 10min, respectively. Base-line separation was obtained for the AAs in rat plasma with the optimized chromatography conditions. The detection limits (LOD) reached downward 10ng/ml. The intra-day and inter-day precisions were less than 7.8%, the accuracies were within ±5.5%, and the average recovery factors were in the range of 94.5-105.4%. In comparison with liquid-liquid extraction, the CPE method has a considerable LOD and higher recoveries. The proposed CPE-HPLC method was specific, sensitive and reliable, and could be an effective tool for the determination of AAs in biological matrixes. With the method the pharmacokinetics of AAs were investigated successfully after oral administration of AF by rats.


Subject(s)
Aristolochiaceae/chemistry , Aristolochic Acids/blood , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/administration & dosage , Fruit/chemistry , Administration, Oral , Animals , Hydrogen-Ion Concentration , Linear Models , Male , Rats , Rats, Sprague-Dawley
19.
Biol Pharm Bull ; 37(3): 387-93, 2014.
Article in English | MEDLINE | ID: mdl-24369268

ABSTRACT

Aristolochiae Fructus (AF) and honey-fried Aristolochiae Fructus (HAF) have been used in China for thousands of years as an anti-tussive and expectorant drug. Few clinical cases were reported associated with the toxicity of AF and HAF, although relatively high contents of aristolochic acids (AAs) were found in them. This work was designed to compare the acute and subacute toxicity of AF and HAF in order to provide references for safe clinical use and to evaluate the possibility of reducing toxicity of AF by honey-processing. The extracts of the herb were fed to mice or rats via gastric tube. Various toxic signs and symptoms, body weights, serum biochemical assay, organ weights and histopathology were used to evaluate the toxic effects. The median lethal dose (LD50) of AF and HAF are 34.1±7.2 g/kg/d and 62.6±8.0 g/kg/d with a 95% average trustable probability (p=0.95), respectively. The subacute results showed a dose-dependant relationship of the toxicity of AF and HAF. Even in the high dose groups, only moderate toxicity was observed. Honey-frying and decoction with water can decrease the contents of AAs, and attenuate the toxic effects of AF. But sufficient attention should be still paid to the safety of AF and HAF due to the existence of AAs.


Subject(s)
Aristolochia/adverse effects , Aristolochic Acids/adverse effects , Drugs, Chinese Herbal/adverse effects , Honey , Animals , Aristolochia/chemistry , Fruit/chemistry , Lethal Dose 50 , Mice , Mice, Inbred Strains
20.
Zhong Yao Cai ; 36(4): 538-41, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-24133995

ABSTRACT

OBJECTIVE: To evaluate the degree of de-toxification of Aristolochiae Fructus by honey-toasting technology from chemical viewpoint. METHODS: The contents of aristolochic acid analogues (AAs) in Aristolochiae Fructus and its honey-toasted product were determined by HPLC, and the degree of de-toxification was evaluated comprehensively. RESULTS: After honey-toasted, the contents of AAs decreased to varying degrees, and some new compounds were found. CONCLUSION: The constituents and contents of Aristolochiae Fructus change after honey-toasted, which indicate honey-toasting can reduce the toxicity of Aristolochiae Fructus.


Subject(s)
Aristolochia/chemistry , Aristolochic Acids/chemistry , Drugs, Chinese Herbal/chemistry , Fruit/chemistry , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/isolation & purification , Honey , Reproducibility of Results , Technology, Pharmaceutical
SELECTION OF CITATIONS
SEARCH DETAIL