Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Cancer Ther ; 10(6): 1082-92, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21518728

ABSTRACT

Interleukin-2 (IL-2) has been shown to possess antitumor activity in numerous preclinical and clinical studies. However, the short half-life of recombinant IL-2 protein in serum requires repeated high-dose injections, resulting in severe side effects. Although adenovirus-mediated IL-2 gene therapy has shown antitumor efficacy, the host antibody response to adenoviral particles and potential biosafety concerns still obstruct its clinical applications. Here we report a novel nanopolymer for IL-2 delivery, consisting of low molecular weight polyethylenimine (600 Da) linked by ß-cyclodextrin and conjugated with folate (named H1). H1 was mixed with IL-2 plasmid to form H1/pIL-2 polyplexes of around 100 nm in diameter. Peritumoral injection of these polyplexes suppressed the tumor growth and prolonged the survival of C57/BL6 mice bearing B16-F1 melanoma grafts. Importantly, the antitumor effects of H1/pIL-2 (50 µg DNA) were similar to those of recombinant adenoviruses expressing IL-2 (rAdv-IL-2; 2 × 10(8) pfu). Furthermore, we showed that H1/pIL-2 stimulated the activation and proliferation of CD8+, CD4+ T cell, and natural killer cells in peripheral blood and increased the infiltration of CD8+, CD4+ Tcells, and natural killer cells into the tumor environment. In conclusion, these results show that H1/pIL-2 is an effective and safe melanoma therapeutic with an efficacy comparable to that of rAdv-IL-2. This treatment represents an alternative gene therapy strategy for melanoma.


Subject(s)
Immunotherapy/methods , Interleukin-2/administration & dosage , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Nanoparticles/administration & dosage , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Drug Delivery Systems , Female , Folic Acid/chemistry , Humans , Interleukin-2/chemistry , Interleukin-2/genetics , Killer Cells, Natural/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , Polymers/therapeutic use , T-Lymphocytes, Helper-Inducer/metabolism , Transgenes , beta-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL