Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 256(Pt 2): 128537, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043665

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease. NSAIDS, cyclophosphamide and glucocorticoid were commonly used to treat RA in clinical application, which long-term administration of these drugs caused serious adverse reactions. Therefore, sulfated hyaluronic acid (sHA) gel (SG) was prepared to firstly treat the RA and avoid the problem of toxic side effect caused by long-term application. In vitro evaluation showed that sHA inhibited the level of reactive oxygen species and TNF-α, IL-1ß, and IL-6, and decreased the ratio of macrophage M1/M2 type, which exerted better anti-inflammatory capacity. In vivo studies showed that the injection of SG into the joint cavity of collagen-induced rheumatoid arthritis (CIA) rats could effectively treat joint swelling and reduce the level of inflammatory factors in the serum. Immunofluorescence showed that SG exerted its anti-inflammatory activity by decreasing the ratio of M1/M2 type macrophages in synovial tissue. Cartilage tissue sections showed that SG reduced bone erosion and elevated chondrocyte expression. These results confirmed that sHA is expected to be developed as a drug to treat or relieve RA, which could effectively regulate the level of macrophages in rat RA, alleviate the physiological state of inflammatory over-excitation, and improve its anti-inflammatory and antioxidant capacity.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Hyaluronic Acid/pharmacology , Sulfates/pharmacology , Arthritis, Rheumatoid/metabolism , Joints , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy
2.
Food Funct ; 12(11): 5130-5143, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33973599

ABSTRACT

Correlations between gut microbiota activities and inflammatory bowel disease (IBD) treatment are gaining research interest. In our previous study, Lactobacillus acidophilus KLDS 1.0901, Lactobacillus helveticus KLDS 1.8701, and Lactobacillus plantarum KLDS 1.0318 showed antibacterial, antioxidant, and immunomodulatory activities. In the current study, we evaluated the effects of three tested strains and their mixture on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. The three tested strains and their mixture significantly decreased the disease activity index (DAI), colon shortening, and myeloperoxidase (MPO) activity. Additionally, the three tested strains and their mixture improved the histological damage, increased the colonic mucous layer integrity, and exhibited lower levels of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), while up-regulating colonic anti-inflammatory cytokine IL-10 levels, tight junction proteins (E-cadherin, zonulae occludens (ZO)-1, occludin and claudin-1) and mucin (MUC1 and MUC2) mRNA expressions to some extent. In addition, mixed lactobacilli showed better anti-inflammatory effects than single-strain treatment. Our study further revealed that mixed lactobacilli increased bacterial diversity and improved gut microbiota composition, increasing short-chain fatty acid (SCFA) production. These results indicated that mixed lactobacilli supplementation could attenuate DSS-induced colitis by modulating the gut microbiota and repairing the intestinal barrier, which provided a scientific basis for its clinical application in the future.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/therapy , Dextran Sulfate/adverse effects , Gastrointestinal Microbiome/drug effects , Lactobacillus/metabolism , Animals , Colitis/chemically induced , Colitis/pathology , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Intestines , Lactobacillus plantarum/metabolism , Male , Mice , Mice, Inbred C57BL , Sulfates/adverse effects , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
3.
Front Microbiol ; 11: 714, 2020.
Article in English | MEDLINE | ID: mdl-32435235

ABSTRACT

Human milk is closely correlated with infant gut microbiota and is important for infant development. However, most infants receive exclusively insufficient breast milk, and the discordance between effects of commercial formula and human milk exists. To elucidate the differences induced by various feeding methods, we determined microbiota and metabolites composition in fecal samples from 77 healthy infants in Northeast China and identified the differences in various feeding methods. Bacterial 16S rRNA gene sequence analysis demonstrated that the fecal samples of exclusively breastfed (BF) infants were abundant in Bifidobacterium and Lactobacillus; the mixed-fed (MF) infants had the highest abundance of Veillonella and Klebsiella; the exclusively formula-fed (FF) infants were enriched in Bacteroides and Blautia; and the complementary food-fed (CF) infants were associated with higher relative abundance of Lachnoclostridium and Akkermansia. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data revealed that the fecal samples of BF infants had the highest abundance of dl-citrulline, threonine, l-proline, l-glutamine, guanine, and l-arginine; the MF infants were abundant in d-maltose, stearidonic acid, capric acid, and myristic acid; the FF infants were enriched in itaconic acid, 4-pyridoxic acid, prostaglandin B2, thymine, dl-α-hydroxybutyric acid, and orotic acid; and the CF infants were associated with higher relative abundance of taurine, l-tyrosine, adenine, and uric acid. Furthermore, compared with the BF infants, the MF and FF infants were more abundant in fatty acid biosynthesis. Collectively, these findings will provide probable explanations for some of the risks and benefits related to infant feeding methods and will support a theoretical basis for the development of infant formula.

SELECTION OF CITATIONS
SEARCH DETAIL