Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Cells ; 12(23)2023 11 21.
Article in English | MEDLINE | ID: mdl-38067099

ABSTRACT

BACKGROUND: Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS: Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS: The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS: "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.


Subject(s)
Glioma , Phosphatidylinositol 3-Kinases , Sorafenib , Humans , Apoptosis , Autophagy , Beclin-1 , Glioma/drug therapy , Glioma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use
2.
Plants (Basel) ; 12(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36616270

ABSTRACT

Arnica montana L. is one of Europe's endemic endangered medicinal plants, with diverse biological activities commonly used in medicine, pharmacy, and cosmetics. Its flower heads are a rich source of raw material, with antibacterial, antifungal, antiseptic, anti-inflammatory, antiradical, antioxidant, and antitumor properties. The objective of the present study was (i) to characterize the chemical composition of flower heads of A. montana plants cultivated under nitrogen fertilization, (ii) to identify the impact of the nitrogen fertilization and extraction method (water, ethanol) on the antioxidant activity of extracts, and (iii) to determine the role of different nitrogen doses applied during plant cultivation and different extraction methods in the anticancer activity of the extracts through analysis of apoptosis and autophagy induction in HT29, HeLa, and SW620 cell lines. The present study shows that nitrogen is a crucial determinant of the chemical composition of arnica flower heads and the antioxidant and anticancer activity of the analyzed extracts. Nitrogen fertilization can modify the composition of pharmacologically active substances (sesquiterpene lactones, flavonoids, essential oil) in Arnicae flos. The content of sesquiterpene lactones, flavonoids, and essential oil increased with the increase in the nitrogen doses to 60 kg N ha-1 by 0.66%, 1.45%, and 0.27%, respectively. A further increase in the nitrogen dose resulted in a decrease in the content of the analyzed secondary metabolites. Varied levels of nitrogen application can be regarded as a relevant way to modify the chemical composition of arnica flower heads and to increase the anticancer activity, which was confirmed by the increase in the level of apoptosis with the increase in fertilization to a level of 60 kg N ha-1. The fertilization of arnica plants with low doses of nitrogen (30 and 60 kg N ha-1) significantly increased the LOX inhibition ability of the ethanol extracts. The present study is the first report on the anticancer activity of A. montana water extracts, with emphasis on the role of water as a solvent. In further studies of factors modifying the quality of Arnicae flos, attention should be paid to the simultaneous use of nitrogen and other microelements to achieve synergistic results and to the possibility of a more frequent use of water as a solvent in studies on the biological activity of A. montana extracts.

3.
Biomolecules ; 11(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34439756

ABSTRACT

The present study aimed to demonstrate Lentinus (formerly Pleurotus) sajor-caju (PSC) as a good source of pro-health substances. It has also shown that supplementation of its culture medium with cow milk may further improve its beneficial properties. Intracellular fractions from fungi grown on a medium supplemented with cow milk were analyzed using various biochemical methods for determination of the nutrient composition. Furthermore, anti-cancer properties of selected extracts were investigated on colorectal cancer cell lines (HT-29, LS 180, and SW948) in vitro. Biochemical analysis showed enrichment in health-enhancing compounds, such as proteins or polysaccharides (about 3.5- and 4.5-fold increase in concentration of proteins and carbohydratesin extracts of mycelia cultured on whole milk (PSC2-I), respectively), with a decrease in the level of free radicals (10-fold decrease in extract grown on milk and medium mixture (1:1) (PSC3-II)), which was related to increased catalase and superoxide dismutase activity (7.5-fold increase in catalase activity and 5-fold in SOD activity in PSC3-II compared to the control). Moreover, the viability of the cancer cells was diminished (to 60.0 ± 6.8% and 40.0 ± 8.6% of the control, on HT-29 and SW948 cells, respectively), along with pro-apoptotic (to 18.8 ± 11.8 and 14.7 ± 8.0% towards LS 180 and SW948 cells, respectively) and NO-secreting effects (about 2-fold increase) of the extracts. This study suggests that PSC has multiple nutritional and anti-cancer properties and can be used as a source of healthy biomolecules in modern medicine or functional foods.


Subject(s)
Antineoplastic Agents/pharmacology , Lentinula/metabolism , Milk/chemistry , Pleurotus/metabolism , Animals , Antioxidants/pharmacology , Apoptosis , Catalase/metabolism , Cell Line, Tumor , HT29 Cells , Humans , Necrosis , Nitric Oxide/chemistry , Polysaccharides/metabolism , Superoxide Dismutase/metabolism
4.
Molecules ; 25(21)2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33171577

ABSTRACT

Coumarins, which occur naturally in the plant kingdom, are diverse class of secondary metabolites. With their antiproliferative, chemopreventive and antiangiogenetic properties, they can be used in the treatment of cancer. Their therapeutic potential depends on the type and location of the attachment of substituents to the ring. Therefore, the aim of our study was to investigate the effect of simple coumarins (osthole, umbelliferone, esculin, and 4-hydroxycoumarin) combined with sorafenib (specific inhibitor of Raf (Rapidly Accelerated Fibrosarcoma) kinase) in programmed death induction in human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells lines. Osthole and umbelliferone were isolated from fruits: Mutellina purpurea L. and Heracleum leskowii L., respectively, while esculin and 4-hydroxycoumarin were purchased from Sigma Aldrich (St. Louis, MO, USA). Apoptosis, autophagy and necrosis were identified microscopically after straining with specific fluorochromes. The level of caspase 3, Beclin 1, PI3K (Phosphoinositide 3-kinase), and Raf kinases were estimated by immunoblotting. Transfection with specific siRNA (small interfering RNA) was used to block Bcl-2 (B-cell lymphoma 2), Raf, and PI3K expression. Cell migration was tested with the wound healing assay. The present study has shown that all the coumarins eliminated the MOGGCCM and T98G tumor cells mainly via apoptosis and, to a lesser extent, via autophagy. Osthole, which has an isoprenyl moiety, was shown to be the most effective compound. Sorafenib did not change the proapoptotic activity of this coumarin; however, it reduced the level of autophagy. At the molecular level, the induction of apoptosis was associated with a decrease in the expression of PI3K and Raf kinases, whereas an increase in the level of Beclin 1 was observed in the case of autophagy. Inhibition of the expression of this protein by specific siRNA eliminated autophagy. Moreover, the blocking of the expression of Bcl-2 and PI3K significantly increased the level of apoptosis. Osthole and sorafenib successfully inhibited the migration of the MOGGCCM and T98G cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Coumarins/pharmacology , Glioblastoma/drug therapy , Magnoliopsida/chemistry , Plant Extracts/pharmacology , Sorafenib/pharmacology , 4-Hydroxycoumarins/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Autophagy/drug effects , Beclin-1/genetics , Beclin-1/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Esculin/pharmacology , Gene Expression Regulation/drug effects , Humans , Necrosis/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/metabolism , Umbelliferones/pharmacology , raf Kinases/metabolism
5.
Fitoterapia ; 142: 104492, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32032635

ABSTRACT

Furanocoumarins are a class of natural compounds produced by several plants, including those consumed by humans. They have been used medicinally in eastern countries for ages. Given the growing body of evidence about their anticancer potential and observations that naturally occurring compounds potentiate the antitumor activity of chemotherapeutics, more attention is paid to elucidation of the nature of furanocoumarins and the possibility of using thereof in practice. The general mechanism by which furanocoumarins eliminate cancer cells is based on cell cycle blockage and initiation of programmed death like apoptosis or autophagy. The precise molecular mechanism of such an action depends on the chemical structure of furanocoumarins, which is based on the furan ring attached to the coumarin backbone in a linear or angular form as well as the type, location, and number of the substituents attached. The review summarizes the current evidence of the antitumor properties of linear and angular furanocoumarins with special emphasis on the molecular mechanism of elimination of cancer cells via apoptosis and autophagy. Negative aspects of the use of coumarins in anticancer therapy will be also discussed especially in the context of their phototoxicity and potential cancerogenic effect.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Furocoumarins/chemistry , Furocoumarins/pharmacology , Humans , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL