Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34546337

ABSTRACT

Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders. Understanding of their pathogenic mechanisms remains sparse, and therapeutic options are lacking. We characterized a mouse model lacking the Cyp2u1 gene, loss of which is known to be involved in a complex form of these diseases in humans. We showed that this model partially recapitulated the clinical and biochemical phenotypes of patients. Using electron microscopy, lipidomic, and proteomic studies, we identified vitamin B2 as a substrate of the CYP2U1 enzyme, as well as coenzyme Q, neopterin, and IFN-α levels as putative biomarkers in mice and fluids obtained from the largest series of CYP2U1-mutated patients reported so far. We also confirmed brain calcifications as a potential biomarker in patients. Our results suggest that CYP2U1 deficiency disrupts mitochondrial function and impacts proper neurodevelopment, which could be prevented by folate supplementation in our mouse model, followed by a neurodegenerative process altering multiple neuronal and extraneuronal tissues.


Subject(s)
Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 2/metabolism , Folic Acid Deficiency/genetics , Folic Acid Deficiency/metabolism , Folic Acid/pharmacology , Animals , Biomarkers/metabolism , Brain/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mutation/genetics , Phenotype , Proteomics/methods
2.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422819

ABSTRACT

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Subject(s)
Alleles , Aspartic Acid/metabolism , Brain Diseases/genetics , Fatty Acid-Binding Proteins/genetics , Malates/metabolism , Mutation , Animals , Child , Child, Preschool , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice , Exome Sequencing
3.
Nat Genet ; 47(7): 809-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26005868

ABSTRACT

Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.


Subject(s)
Brain/metabolism , Fatty Acids, Omega-3/metabolism , Microcephaly/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Case-Control Studies , Child , Child, Preschool , Consanguinity , Female , Genes, Lethal , Genetic Association Studies , HEK293 Cells , Humans , Infant , Male , Mice, Knockout , Mutation, Missense , Symporters , Syndrome , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL