Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Chem ; 95(32): 12184-12191, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37530603

ABSTRACT

When consumed, excess progesterone (P4)─found in food and the environment─can lead to severe illnesses in humans. Therefore, quantitative analysis of P4 is critical for identifying its hazardous levels. In this study, a novel signal "on-amplified-off" P4 detection mode was proposed, which was based on the utilization of hafnium oxide (HfO2) as a unique electrochemiluminescence (ECL) emitter, produced by calcining UiO-66(Hf). This is the first time that HfO2 has been used as an ECL emitter. HfO2 displayed excellent conductivity and a high specific surface area, allowing it to connect with numerous aptamers and produce a "signal-on" effect. Ni-doped ZnO (Ni-ZnO) acted as a coreaction accelerator, enhancing the ECL strength of HfO2 by generating more tripropylamine radicals. cDNA was labeled with Ni-ZnO, and Ni-ZnO was linked to the aptamer via base complementary pairing, affording "signal-amplified". The presence of the target molecule P4 instigated a specific binding process with the aptamer, triggering the shedding of cDNA-Ni-ZnO and resulting in "signal-off". This novel "on-amplified-off" strategy effectively improved the sensitivity and specificity of P4 analysis, introducing a practical method for detecting biomolecules beyond the scope of this study, which holds immense potential for future applications.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Zinc Oxide , Humans , Progesterone , Metal Nanoparticles/chemistry , DNA, Complementary , Hafnium , Luminescent Measurements/methods , Nanostructures/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
2.
Neuroimage Clin ; 28: 102451, 2020.
Article in English | MEDLINE | ID: mdl-33022581

ABSTRACT

The thalamus, with the highest density of nicotinic acetylcholine receptor (nAChR) in the brain, plays a central role in thalamo-cortical circuits that are implicated in nicotine addiction. However, little is known about whether the thalamo-cortical circuits are potentially predictive of smoking relapse. In the current study, a total of 125 participants (84 treatment-seeking male smokers and 41 age-matched male nonsmokers) were recruited. Structural and functional magnetic resonance images (MRI) were acquired from all participants. After a 12-week smoking cessation treatment with varenicline, the smokers were then divided into relapsers (n = 54) and nonrelapsers (n = 30). Then, we compared thalamic volume and seed-based thalamo-cortical resting state functional connectivity (rsFC) prior to the cessation treatment among relapsers, nonrelapsers and nonsmokers to investigate the associations between thalamic structure/function and smoking relapse. Increased thalamic volume was detected in smokers relative to nonsmokers, and in relapsers relative to nonrelapsers, especially on the left side. Moreover, decreased left thalamo-precuneus rsFC was detected in relapsers relative to nonrelapsers. Additionally, a logistic regression analysis showed that the thalamic volume and thalamo-precuneus rsFC predicted smoking relapse with an accuracy of 75.7%. These novel findings indicate that increased thalamic volume and decreased thalamo-precuneus rsFC are associated with smoking relapse, and these thalamic measures may be used to predict treatment efficacy of nicotine addiction and serve as a potential biomarker for personalized medicine.


Subject(s)
Brain Mapping , Thalamus , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Parietal Lobe , Recurrence , Smoking , Thalamus/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL