Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Food Sci ; 89(5): 3019-3036, 2024 May.
Article in English | MEDLINE | ID: mdl-38517018

ABSTRACT

Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, is rich in flavonoids with various biological activities. Our study found that Vine tea total flavonoids (TFs) treatment reduced the body mass and blood lipid levels and improved the hepatic tissue morphology in mice fed the high-fat diet (HFD). In vivo, TF treatment activated the hepatic adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, initiated autophagy, and regulated the expression levels of proteins for lipid metabolism in those HFD-fed mice. In vitro, TF treatment dramatically reduced the lipid droplets and triacylglycerol content in HepG2 and L02 cells treated with oleic acid (OA). These were associated with the activation of the AMPK/mTOR pathway and autophagy initiation in OA-treated hepatocytes. This phenotype was abolished in the presence of 3-methyladenine, an autophagy inhibitor. Our results indicated that the TF activation of AMPK/mTOR leads to the stimulation of autophagy and a decrease in the buildup of intracellular lipids in hepatocytes, showing the potential of TF as a therapeutic agent for nonalcoholic fatty liver disease. PRACTICAL APPLICATION: Vine tea, a tea drink, has been consumed by Chinese folk for over a thousand years. The result of this study will provide evidence that vine tea total flavonoids have potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Flavonoids , Mice, Inbred C57BL , TOR Serine-Threonine Kinases , Animals , Flavonoids/pharmacology , TOR Serine-Threonine Kinases/metabolism , Mice , Diet, High-Fat/adverse effects , AMP-Activated Protein Kinases/metabolism , Male , Humans , Hep G2 Cells , Ampelopsis/chemistry , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Autophagy/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Tea/chemistry , Triglycerides/metabolism , Plant Extracts/pharmacology
2.
Sci Rep ; 14(1): 7421, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548824

ABSTRACT

Radix Fici Simplicissimae (RFS) is widely studied, and is in demand for its value in medicines and food products, with increased scientific focus on its cultivation and breeding. We used ultra-high-performance liquid chromatography quadrupole-orbitrap mass spectrometry-based metabolomics to elucidate the similarities and differences in phytochemical compositions of wild Radix Fici Simplicissimae (WRFS) and cultivated Radix Fici Simplicissimae (CRFS). Untargeted metabolomic analysis was performed with multivariate statistical analysis and heat maps to identify the differences. Eighty one compounds were identified from WRFS and CRFS samples. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that mass spectrometry could effectively distinguish WRFS from CRFS. Among these, 17 potential biomarkers with high metabolic contents could distinguish between the two varieties, including seven phenylpropanoids, three flavonoids, one flavonol, one alkaloid, one glycoside, and four organic acids. Notably, psoralen, apigenin, and bergapten, essential metabolites that play a substantial pharmacological role in RFS, are upregulated in WRFS. WRFS and CRFS are rich in phytochemicals and are similar in terms of the compounds they contain. These findings highlight the effects of different growth environments and drug varieties on secondary metabolite compositions and provide support for targeted breeding for improved CRFS varieties.


Subject(s)
Drugs, Chinese Herbal , Plant Breeding , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Multivariate Analysis , Drugs, Chinese Herbal/chemistry , Metabolomics/methods
3.
Sci Total Environ ; 915: 169957, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242446

ABSTRACT

This study developed a two-stage process, including Tetrasphaera-dominated enhanced biological phosphorus-removal (EBPR(T)) sequencing batch reactor (SBR), followed by sulfur autotrophic denitrification (SADN) SBR, to achieve advanced nutrients removal from low VFAs wastewater. The removal efficiencies of nitrogen and phosphorus (PO43--P) reached 99 % with effluent PO43--P and total inorganic nitrogen (TIN) below 0.5 mg/L and 1 mg/L in EBPR(T) and SADN SBR, respectively. Mechanism analysis indicated that as increasing drainage ratio and complex carbon sources, free amino acids, glycogen, and PHA served as the endogenous carbon sources of Tetrasphaera to store energy. SADN contributed to approximately 80 % of nitrogen removal. DNA and cDNA results indicated Tetrasphaera was shifted from clade 2 to clade 1 after increasing the drainage ratio and the complexity of the carbon source, and Tetrasphaera (50.95 %) and Ca. Accumulibacter (9.12 %) were the most important functional microorganisms synergized to remove phosphorus at the transcriptional level in EBPR(T). Thiobacillus (45.97 %) and Sulfuritalea (9.24 %) were the dominant sulfur autotrophic denitrifiers at gene and transcriptional level in SADN. The results suggested that the EBPR(T) - SADN SBRs have great nutrient removal performance in treating low VFAs wastewater without additional carbon sources.


Subject(s)
Phosphorus , Wastewater , Phosphorus/metabolism , Denitrification , Bioreactors , Nutrients , Carbon , Sulfur , Nitrogen/metabolism , Sewage
4.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294202

ABSTRACT

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Subject(s)
Chlorella , Wastewater , Nitrification , Denitrification , Phosphorus/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Carbon Dioxide , Chlorella/metabolism , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology
5.
Fitoterapia ; 173: 105812, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168568

ABSTRACT

A series of myricetin derivatives containing benzoxazinone were designed and synthesized. The structures of all compounds were characterized by NMR and HRMS. The structure of Y4 had been confirmed by single-crystal X-ray diffraction analysis. The test results of EC50 values of tobacco mosaic virus (TMV) suggested that Y8 had the best curative and protective effects, with EC50 values of 236.8, 206.0 µg/mL, respectively, which were higher than that of ningnanmycin (372.4, 360.6 µg/mL). Microscale thermophoresis (MST) experiments demonstrated that Y8 possessed a strong binding affinity for tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (Kd) value of 0.045 µM, which was superior to the ningnanmycin (0.700 µM). The findings of molecular docking studies revealed that Y8 interacted with multiple amino acid residues of TMV-CP through the formation of non-covalent bonds, which had an effect on the self-assembly of TMV particles. The malondialdehyde (MDA) and superoxide dismutase assay (SOD) content assays also fully verified that Y8 could stimulate the plant immune system and enhance disease resistance by reducing MDA content and increasing SOD content. In summary, myricetin derivatives containing benzoxazinone could be considered to further research and development as novel antiviral agents.


Subject(s)
Flavonoids , Tobacco Mosaic Virus , Structure-Activity Relationship , Molecular Structure , Benzoxazines/pharmacology , Molecular Docking Simulation , Microbial Sensitivity Tests , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Superoxide Dismutase , Drug Design
6.
Medicine (Baltimore) ; 103(1): e36752, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181285

ABSTRACT

Bone development and lung function are integral to child and adolescent health. Both influence an individual's overall well-being and potentially affect long-term health. Utilizing a comprehensive dataset from the National Health and Nutrition Examination Survey, this study aims to elucidate the relationship between lung function and bone mineral density (BMD) in a representative sample of children and adolescents. The analysis covered 3410 participants aged 8 to 19 years. We employed weighted multivariate linear regression and restricted cubic spline curve visualizations to explore the intricate association between lung function metrics, particularly first-second expiratory volume 1 second/forced vital capacity ratio, and lumbar BMD. Our data indicated a positive association between lung function and lumbar BMD in children and adolescents. Specifically, higher lung function metrics were linked with increased lumbar BMD. This association was more pronounced in younger participants or those with a lower body mass index. A significant positive relationship exists between lung function and BMD in the pediatric population. Recognizing this association is crucial for holistic health strategies for children and adolescents. This study underscores the need for integrated health monitoring during formative years, which can influence health trajectories as these individuals transition to adulthood.


Subject(s)
Bone Density , Osteosclerosis , Child , Humans , Adolescent , Nutrition Surveys , Adolescent Health , Benchmarking , Lung
7.
Bioresour Technol ; 393: 130128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040313

ABSTRACT

Applications of post-denitrification processes are subjected to low reaction rates caused by a lack of carbon resources. To offer a solution for reaction rate promotion, this research found a pilot-scale anaerobic/aerobic/anoxic bioreactor treating 55-120 m3/d low-strength municipal wastewater for 273 days. A short hydraulic retention time (HRT, 5-6 h) and a high nitrogen removal rate (63.2 ± 9.3 g-N/m3·d) were achieved using HRT optimization. The effluent total nitrogen concentration was maintained at 5.8 ± 1.4 mg/L while operating at a high nitrogen loading rate of 86.2 ± 12.8 g-N/m3·d. The short aeration (1.25-1.5 h) minimized the Glycogen loss. The endogenous denitrification rate increased to above 1.0 mg/(g-VSS·h). The functional genus Ca. Competibacter enriched to 2.3 %, guaranteeing the efficient post-denitrification process. Dechloromonas rose to 1.1 %, aiding in the synchronous phosphorus removal. These findings offered fresh insights into AOA processes to achieve energy/cost-saving wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Water Purification , Sewage , Denitrification , Anaerobiosis , Nitrogen , Bioreactors , Phosphorus , Nitrification
8.
Fitoterapia ; 172: 105739, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952763

ABSTRACT

In this study, 30 chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine were designed and synthesized. The results of antibacterial activity showed that EC50 values of N26 against Xoo, Pcb was 36.41, 38.53 µg/mL, respectively, which were better than those of thiodiazole copper, whose EC50 values were 60.62, 106.75 µg/mL, respectively. The bacterial inhibitory activity of N26 against Xoo was verified by SEM. Antibacterial mechanism between N26 and Xoo was preliminarily explored, the experimental results showed that when the drug concentration was 100 mg/L, N26 had a good cell membrane permeability of Xoo, and it can inhibit the production of EPS content and extracellular enzyme content to disrupt the integrity of the Xoo biofilms achieving the effect of inhibiting Xoo. At 200 mg/L, N26 can protect and inhibit the lesions of post-harvested potatoes in vivo. The activities of N1-N30 against TMV were determined with half leaf dry spot method. The EC50 values of the curative and protective activity of N22 was 77.64 and 81.55 µg/mL, respectively, which were superior to those of NNM (294.27, 175.88 µg/mL, respectively). MST experiments demonstrated that N22 (Kd = 0.0076 ± 0.0007 µmol/L) had a stronger binding ability with TMV-CP, which was much higher than that of NNM (Kd = 0.7372 ± 0.2138 µmol/L). Molecular docking results showed that N22 had a significantly higher affinity with TMV-CP than NNM.


Subject(s)
Chalcone , Chalcones , Oryza , Xanthomonas , Chalcone/pharmacology , Chalcones/pharmacology , Molecular Structure , Molecular Docking Simulation , Triazoles/pharmacology , Microbial Sensitivity Tests , Pyridines/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Diseases , Oryza/microbiology , Structure-Activity Relationship , Drug Design
9.
J Environ Manage ; 351: 119839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104464

ABSTRACT

Photo-enhanced Biological Phosphorus Removal (PEBPR) systems, promising wastewater treatment technology, offer efficient phosphorus removal without external oxygen. However, comprehending the impact of sludge retention time (SRT) on the system is crucial for successful implementation. This study investigated the SRT effect on nutrient fate, microbial community, and bacterial phototolerance in PEBPR systems. PEBPR systems exhibited good bacterial phototolerance at SRT of 10, 15, and 20 d, with optimal phosphorus-accumulation metabolism observed at SRT of 10 and 15d. However, at SRT of 5d, increased light sensitivity and glycogen-accumulating organisms (GAOs) growth resulted in poor P removal (71.9%). Accumulibacter-IIC were the dominant P accumulating organisms (PAOs) at SRT of 10, 15, and 20 d. Accumulibacter-I, IIC and IIF were the major PAOs at SRT of 5 d. The decrease in SRT promoted the microalgal population diversity, and Dictyosphaerium and Chlorella were the major microalgal species in this study. Flow cytometry results revealed high light intensity triggered intracellular Fe2+ efflux, limiting translation activity and metabolism. Moreover, PAOs had lower phototolerance than GAOs due to Poly-P bound intracellular Mg2+ affecting enzyme activity. This study provides an in-depth understanding of PEBPR systems operation strategy toward environmentally sustainable wastewater treatment.


Subject(s)
Chlorella , Microbiota , Sewage , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism , Nutrients
10.
Biomaterials ; 305: 122434, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141501

ABSTRACT

The immunosuppressive tumor microenvironment (TME) greatly limits the actual outcome of immunotherapy. Therefore, it is urgent to develop appropriate strategies to reshape the TME and ultimately induce a strong immune response. Here, we developed a dual-functional liposome loaded with the photothermal agent IR808 near the infrared region (NIR) and Toll-like-receptor-7 (TLR7) agonist loxoribine prodrug (Lipo@IR808@Loxo) to achieve NIR light-triggered photothermal therapy (PTT) and the targeted delivery of immune adjuvants. Under NIR irradiation, Lipo@IR808@Loxo could greatly improve the efficiency of PTT to directly kill tumor cells and release tumor-associated antigens, which could work together with loaded loxoribine to relieve the immunosuppressive TME, effectively promoting the activation of antigen-presenting cells and subsequent antigen presentation. In this way, Lipo@IR808@Loxo could act as an in situ therapeutic cancer vaccine, eventually inducing a potent antitumor T-cell response. When further combined with immune checkpoint blockade, Lipo@IR808@Loxo-mediated photothermal immunotherapy could not only eliminate the primary tumors but also inhibit the growth of distant tumors, thus enhancing the abscopal effect.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy , Toll-Like Receptor 7 , Neoplasms/therapy , Adjuvants, Immunologic/pharmacology , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor
11.
Nutrients ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836498

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of global mortality, and is considered one of diseases with the most rapid growth rate in China. Numerous studies have indicated a closed relationship between an increased incidence of CVD and dietary factors. Dietary fat is one of the three primary nutrients of consumption; however, high fat dietary in causing CVD has been neglected in some official dietary guidelines. Our present review has analyzed the relationship between dietary fat consumption and CVD in China over the past 30 years (from 1990 to 2019). There is a significant correlation between CVD incidence and mortality for consumption of both vegetable oils and animal fats, per capita consumption, and the relative weight of dietary fat exceeding that of other food ingredients (e.g., salt, fruit, and marine food). For fatty acid species, the proportion of ω6 fatty acid consumption increased, causing a significant increase in the ratios of ω6/ω3 fatty acids, whereas the proportion of monounsaturated fatty acid consumption decreased. Such changes have been considered a characteristic of dietary fat consumption in Chinese residents over the past 30 years, and are closely related to the incidence of CVD. Therefore, we suggest that the government should spread awareness regarding the consumption of dietary fat intake to prevent CVD and related health disorders. The public should be educated to avoid high fat diet and increase the intake of monounsaturated fatty acids and ω3 fatty acids.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Animals , Dietary Fats/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Fatty Acids , Fatty Acids, Monounsaturated , Diet, High-Fat , Risk Factors
12.
Water Res ; 246: 120742, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857010

ABSTRACT

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Subject(s)
Nitrification , Wastewater , Denitrification , Phosphorus/metabolism , Waste Disposal, Fluid , Bioreactors/microbiology , Nitrogen/metabolism , Bacteria/metabolism , Glycogen/metabolism , Nitrites/metabolism , Polyphosphates/metabolism , Sewage
13.
Phytother Res ; 37(12): 5958-5973, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776121

ABSTRACT

Disturbances in lipid metabolism and dysbiosis of the gut microbiota play an important role in the progression of hyperlipidemia. Previous study indicated that Ilicis Rotundae Cortex possesses anti-hyperlipidemic activity, and rotundic acid (RA) identified as a key active compound to be incorporated into the body. The study aimed to evaluate the anti-hyperlipidemia effects of RA and explored its impact on gut microbiota and lipid metabolism, as well as its possible mechanisms for improving hyperlipidemia. The study methodology included a comprehensive evaluation of the effects of RA on steatosis markers of hyperlipidemia, lipid metabolism, and gut microbiota by assessing biochemical parameters and histopathology, lipidomics, 16S rRNA gene sequencing, and short-chain fatty acid (SCFA) assays. The results showed that RA effectively reduced body weight and the steatosis markers in serum and liver. Moreover, the lipidomic analysis revealed significant changes in plasmatic and hepatic lipid levels, and these were restored by RA. According to the results of 16S rRNA gene sequencing, RA supplementation raised the relative abundance of Bacteroidetes and Proteobacteria while decreasing the relative abundance of Firmicutes. RA significantly boosted the relative abundance of SCFAs by increasing SCFAs-producing bacteria such as Bacteroides, Alloprevotella, Desulfovibrio, etc. In summary, RA could regulate triglyceride metabolism and glycerophospholipid metabolism, restore gut microbiota structure, and increase the relative abundance of SCFAs-producing bacteria to exert its hypolipidemic effects. These findings suggest RA to be a promising therapeutic agent for hyperlipidemia.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Rats , Animals , Lipid Metabolism , Hyperlipidemias/drug therapy , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria
14.
Acta Pharm Sin B ; 13(8): 3414-3424, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655332

ABSTRACT

A new class of potent liver injury protective compounds, phychetins A-D (1-4) featuring an unique 6/6/5/6/5 pentacyclic framework, were isolated and structurally characterized from a Chinese medicinal plant Phyllanthus franchetianus. Compounds 2-4 are three pairs of enantiomers that were initially obtained in a racemic manner, and were further separated by chiral HPLC preparation. Compounds 1-4 were proposed to be originated biosynthetically from a coexisting lignan via an intramolecular Friedel-Crafts reaction as the key step. A bioinspired total synthesis strategy was thus designated, and allowed the effective syntheses of compounds 2-4 in high yields. Some of compounds exhibited significant anti-inflammatory activities in vitro via suppressing the production of pro-inflammatory cytokine IL-1ß. Notably, compound 4, the most active enantiomeric pair in vitro, displayed prominent potent protecting activity against liver injury at a low dose of 3 mg/kg in mice, which could serve as a promising lead for the development of acute liver injury therapeutic agent.

15.
J Oleo Sci ; 72(8): 745-754, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37468273

ABSTRACT

Although partially hydrogenated oil (PHO) provides foods with outstanding thick tastes and pronounced "creamy" flavor, the high level of artificial trans-fatty acids (TFA; about 30%) limits its usages around the world in the near future. It is necessary to produce trans-free alternatives with similar tastes to PHO. The relationship between sensory attributes and physicochemical characteristics of PHO and four typical specialty fats were therefore analyzed in the present study. PHO exhibited the highest greasiness score (8.19), accompanying by mild creaminess and aftertaste as well as a weak coolness during swallow, which were resulted from the close-packed arrangements of TFA, its cis-counterparts and other long chain fatty acids. None of artificial trans-fats, mainly anhydrous milk fat, cocoa butter, and coconut oil and its fully hydrogenated counterpart, were similar to PHO in terms of these sensory attributes. The unique fatty acid species of PHO and their arrangements contributed to the relatively smooth solid fat content profile and melting-crystallization curve, as well as forming uniform and dense ß' crystal-structures (Db=1.80). The Pearson correlation analyses relevelled that long chain fatty acids, e.g., t-C18:1 and C18:1, and melting final temperatures were generally positive correlated with greasiness, creaminess and aftertaste; whereas these indices were negatively correlated with coolness. The melting enthalpy was highly connected with coolness, which reflected the endothermic effectiveness during the melting process of fats in the mouth. These indices screened by correlation analyses that were strongly correlated with sensory attributes could provide references for producing trans-free alternatives.


Subject(s)
Plant Oils , Trans Fatty Acids , Plant Oils/chemistry , Dietary Fats , Fatty Acids/analysis , Fats , Coconut Oil , Trans Fatty Acids/analysis
16.
Zhen Ci Yan Jiu ; 48(7): 686-93, 2023 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-37518963

ABSTRACT

OBJECTIVE: To observe the meridian-acupoint reactions of foot three yin meridians in primary dysmenorrhea(PD) and secondary dysmenorrhea(SD) patients, so as to summarize the rules of meridian-acupoint reaction and acupoints selection. METHODS: Thirty-five patients with PD (PD group), 34 patients with SD (SD group) and 35 healthy subjects (healthy group) were recruited. The compression method was used to examine the lower leg segment of the foot three yin meridians. Positive reactions(palpable skin changes, including cords, nodules, depressions) and tenderness of meridians and acupoints were recorded. The visual analogue scale (VAS) was used to evaluate the tenderness severity of acupoints. RESULTS: Compared with the healthy group, the probability of positive reactions and tenderness in foot three yin meridians were higher in PD and SD groups (P<0.01,P<0.05). Compared with the PD group, the probability of positive reactions in Spleen and Liver Meridians were higher in the SD group, with higher probability of tenderness in Liver Meridian(P<0.05). The probability of positive reactions and tenderness in the Spleen Meridian of PD and SD groups was significantly higher than that in the Kidney Meridian (P<0.01), while the probability of tenderness in the Spleen Meridian of the PD group was significantly higher than that in the Liver Meridian (P<0.05). Positive reactions and tenderness were concentrated at Yinlingquan (SP9), Diji (SP8) and Sanyinjiao (SP6) of Spleen Meridian and Xiguan (LR7) and Ligou (LR5) in Liver Meridian of PD and SD groups. In comparison with the PD group, the probability of positive reactions, tenderness and VAS score of SP8 and LR5 of the SD group were higher (P<0.05, P<0.01). CONCLUSION: The positive reaction occurs most frequently in the Spleen Meridian, followed by the Liver Meridian, and least frequently in the Kidney Meridian. The acupoints with positive reaction are different between PD and SD, which suggests that the Spleen Meridian acupoints should be the main acupoints when treating the two kinds of dysmenorrhea, and acupoints should also be selected according to the meridian and acupoint examination results.


Subject(s)
Acupuncture Therapy , Meridians , Female , Humans , Acupuncture Points , Dysmenorrhea/therapy , Lower Extremity , Leg
17.
J Sci Food Agric ; 103(12): 6119-6127, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37139632

ABSTRACT

BACKGROUND: A novel film based on some natural ingredients (wheat gluten, pectin, and polyphenols) was used to improve the quality and storage stability of high-fat food due to their good sustainable, mechanical, and edible properties. RESULTS: With the addition of polyphenols from Cedrus deodara (in the form of pine-needle extract (PNE)), the physicochemical properties (thickness, moisture content, and color), mechanical properties (tensile strength and elongation), barrier properties (water vapor, oil, and oxygen permeability, transmittance), and thermal stability of the composite film were improved. According to the analysis of infrared spectroscopy and molecular docking, the main compounds of PNE interacted with wheat gluten by hydrogen bonds and hydrophobic forces to form a compact and stable structure. In addition, the composite film showed a remarkable antioxidant capability to scavenge free radicals, and the film matrix could effectively protect the antioxidant activity of PNE. Furthermore, using cured meat as a model, the composite film exhibited a fine packaging performance in high-fat food during storage, which could obviously inhibit the excessive oxidation of fat and protein of cured meat and was beneficial in forming its special flavor. CONCLUSION: Our results suggest that the composite film possessed good properties and had potential for packing of high-fat foods, which could improve the quality and safety of food during processing and storage. © 2023 Society of Chemical Industry.


Subject(s)
Pectins , Polyphenols , Polyphenols/chemistry , Glutens , Molecular Docking Simulation , Food Packaging/methods , Antioxidants/chemistry , Permeability
18.
Metab Brain Dis ; 38(6): 1937-1962, 2023 08.
Article in English | MEDLINE | ID: mdl-37032419

ABSTRACT

Alzheimer's Disease is considered as an insidious neurodegenerative progressive disease but its pathogenesis has not been elucidated. Acoritataninowii Rhizoma exhibits anti-dementia effects as a traditional Chinese medicine (TCM), which is linked to its anti- Alzheimer's Disease mechanism. In this study, network pharmacology and molecular docking were used to examine the potential of Acoritataninowii Rhizoma for Alzheimer's Disease. In order to construct PPI networks and drug-component-target-disease networks, disease-related genes and proteins were gathered from the database. Gene ontology (GO), pathway enrichment (KEGG), and molecular docking were used to forecast the potential mechanism of Acoritataninowii Rhizoma on Alzheimer's disease. Therefore, 4 active ingredients and 81 target genes were screened from Acoritataninowii Rhizoma, 6765 specific target genes were screened from Alzheimer's Disease, and 61 drug-disease cross genes were validated. GO analysis showed that Acoritataninowii Rhizoma can regulate processes such as the protein serine/threonine kinase associated with MAPK. KeGG pathway analysis showed that the signaling pathways affected by Acoritataninowii Rhizoma were fluid shear stress and atherosclerosis, AGE-RAGE and other pathways. Molecular docking implied that the pharmacological influences of the bioactive constituents of Acoritataninowii Rhizoma (Cycloaartenol and kaempferol) on Alzheimer's Disease may related to ESR1 and AKT1, respectively. AKT1 and ESR1 may be the core target genes of the treatment for Alzheimer's disease. Kaempferol and Cycloartenol might be core bioactive constituents for treatment.


Subject(s)
Alzheimer Disease , Atherosclerosis , Humans , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Kaempferols/pharmacology , Network Pharmacology
19.
J Hazard Mater ; 451: 131157, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36889076

ABSTRACT

Sulfate in wastewater can be reduced to sulfide and its impact on the stability of enhanced biological phosphorus removal (EBPR) is still unclear. In this study, the metabolic changes and subsequent recovery of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were investigated at different sulfide concentrations. The results showed that the metabolic activity of PAOs and GAOs was mainly related to H2S concentration. Under anaerobic conditions, the catabolism of PAOs and GAOs was promoted at H2S concentrations below 79 mg/L S and 271 mg/L S, respectively, and inhibited above these concentrations; whereas anabolism was consistently inhibited in the presence of H2S. The phosphorus (P) release was also pH-dependent due to the intracellular free Mg2+ efflux from PAOs. H2S was more destructive to the esterase activity and membrane permeability of PAOs than those of GAOs and prompted intracellular free Mg2+ efflux of PAOs, resulting in worse aerobic metabolism and subsequent recovery of PAOs than GAOs. Additionally, sulfides facilitated the production of extracellular polymeric substances (EPS), especially tightly bound EPS. The amount of EPS in GAOs was significantly higher than that in PAOs. The above results indicated that sulfide had a stronger inhibition to PAOs than GAOs, and when sulfide was present, GAOs had a competitive advantage over PAOs in EBPR.


Subject(s)
Glycogen , Polyphosphates , Sulfides , Wastewater , Aerobiosis , Bioreactors , Glycogen/metabolism , Phosphorus/pharmacology , Phosphorus/metabolism , Polyphosphates/metabolism , Wastewater/chemistry , Sulfides/analysis , Sulfides/metabolism , Waste Disposal, Fluid
20.
ACS Nano ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36626296

ABSTRACT

Effective drug delivery and prevention of postoperative recurrence are significant challenges for current glioblastoma (GBM) treatment. Poor drug delivery is mainly due to the presence of the blood-brain barrier (BBB), and postoperative recurrence is primarily due to the resistance of GBM cells to chemotherapeutic drugs and the presence of an immunosuppressive microenvironment. Herein, a biomimetic nanodrug delivery platform based on endogenous exosomes that could efficiently target the brain without targeting modifications and co-deliver pure drug nanomicelles and immune adjuvants for safe and efficient chemo-immunotherapy against GBM is prepared. Inspired by the self-assembly technology of small molecules, tanshinone IIA (TanIIA) and glycyrrhizic acid (GL), which are the inhibitors of signal transducers and activators of transcription 3 from traditional Chinese medicine (TCM), self-assembled to form TanIIA-GL nanomicelles (TGM). Endogenous serum exosomes are selected to coat the pure drug nanomicelles, and the CpG oligonucleotides, agonists of Toll-like receptor 9, are anchored on the exosome membrane to obtain immune exosomes loaded with TCM self-assembled nanomicelles (CpG-EXO/TGM). Our results demonstrate that CpG-EXO/TGM can bind free transferrin in blood, prolong blood circulation, and maintain intact structures when traversing the BBB and targeting GBM cells. In the GBM microenvironment, the strong anti-GBM effect of CpG-EXO/TGM is mainly attributed to two factors: (i) highly efficient uptake by GBM cells and sufficient intracellular release of drugs to induce apoptosis and (ii) stimulation of dendritic cell maturation and induction of tumor-associated macrophages polarization by CpG oligonucleotides to generate anti-GBM immune responses. Further research found that CpG-EXO/TGM can not only produce better efficacy in combination with temozolomide but also prevent a postoperative recurrence.

SELECTION OF CITATIONS
SEARCH DETAIL