Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Heliyon ; 10(5): e27492, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463888

ABSTRACT

The Zingiberaceae family serves as a diverse repository of bioactive phytochemicals, comprising approximately 52 genera and 1300 species of aromatic perennial herbs distinguished by their distinct creeping horizontal or tuberous rhizomes. Amomum villosum Lour. and Amomum tsao-ko Crevost & Lemaire., are the important plants of family Zingiberaceae that have been widely used in traditional medicine for the treatment of many ailments. The Amomum species are employed for their aromatic qualities and are valued as spices and flavorings. In the essential oils (EOs) of Amomum species, notable constituents include, camphor, methyl chavicol, bornyl acetate, trans-p-(1-butenyl) anisole, α-pinene, and ß-pinene. OBJECTIVE: The aim of this review is to present an overview of pharmacological studies pertaining to the extracts and secondary metabolites isolated from both species. The foremost objective of review is not only to increase the popularity of Amomum as a healthy food choice but also to enhance its status as a staple ingredient for the foreseeable future. RESULT: We endeavored to gather the latest information on antioxidant, antidiabetic, anticancer, antiobesity, antimicrobial, and anti-inflammatory properties of plants as well as their role in neuroprotective diseases. Research conducted through in-vitro studies, animal model, and compounds analysis have revealed that both plants exhibit a diverse array health promoting properties. CONCLUSION: the comprehensive review paper provides valuable insights into the diverse range of bioactive phytochemicals found in A. villosum and A. tsao-ko, showcasing their potential in preventing diseases and promoting overall human well-being. The compilation of information on their various health-enhancing properties contributes to the broader understanding of these plants and their potential applications in traditional medicine and beyond.

2.
Molecules ; 27(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956759

ABSTRACT

Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.


Subject(s)
Anti-Allergic Agents , Coix , Animals , Functional Food , Humans , Phenols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
BMC Genomics ; 23(Suppl 1): 346, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35513810

ABSTRACT

BACKGROUND: The tomato (Solanum lycopersicum L.) is an economically valuable crop grown worldwide. Because the use of sterile males reduces the cost of F1 seed production, the innovation of male sterility is of great significance for tomato breeding. The ABORTED MICROSPORES gene (AMS), which encodes for a basic helix-loop-helix (bHLH) transcription factor, has been previously indicated as an essential gene for tapetum development in Arabidopsis and rice. To determine the function of the SlAMS gene (AMS gene from S. lycopersicum) and verify whether it is a potential candidate gene for generating the male sterility in tomato, we used virus-induced gene silencing (VIGS), CRISPR/Cas9-mediated genome editing and over-expression technology to transform tomato via Agrobacterium infection. RESULTS: Here, the full-length SlAMS gene with 1806 bp from S. lycopersicum (Accession No. MK591950.1) was cloned from pollen cDNA. The results of pollen grains staining showed that, the non-viable pollen proportions of SlAMS-silenced (75%), -knockouted (89%) and -overexpressed plants (60%) were significantly higher than the wild type plants (less than 10%; P < 0.01). In three cases, the morphology of non-viable pollen grains appeared tetragonal, circular, atrophic, shriveled, or otherwise abnormally shaped, while those of wild type appeared oval and plump. Furthermore, the qRT-PCR analysis indicated that SlAMS in anthers of SlAMS-silenced and -knockouted plants had remarkably lower expression than in that of wild type (P < 0.01), and yet it had higher expression in SlAMS-overexpressed plants (P < 0.01). CONCLUSION: In this paper, Our research suggested alternative approaches to generating male sterility in tomato, among which CRISPR/Cas9-mediated editing of SlAMS implied the best performance. We also demonstrated that the downregulation and upregulation of SlAMS both affected the pollen formation and notably led to reduction of pollen viability, suggesting SlAMS might be essential for regulating pollen development in tomato. These findings may facilitate studies on clarifying the SlAMS-associated molecular regulatory mechanism of pollen development in tomato.


Subject(s)
Arabidopsis , Infertility, Male , Solanum lycopersicum , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Gene Silencing , Humans , Infertility, Male/genetics , Male , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Front Pharmacol ; 11: 01067, 2020.
Article in English | MEDLINE | ID: mdl-33041782

ABSTRACT

Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer's disease (AD), Parkinson's disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.

5.
Pharm Biol ; 58(1): 950-958, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32956595

ABSTRACT

CONTEXT: Acetylshikonin, a naphthoquinone derivative, is mainly extracted from some species of the family Boraginaceae, such as Lithospermum erythrorhizon Sieb. et Zucc., Arnebia euchroma (Royle) Johnst., and Arnebia guttata Bunge. As a bioactive compound, acetylshikonin has attracted much attention because of its broad pharmacological properties. OBJECTIVE: This review provides a comprehensive summary of the pharmacology, toxicity, and pharmacokinetics of acetylshikonin focussing on its mechanisms on the basis of currently available literature. METHODS: The information of acetylshikonin from 1977 to 2020 was collected using major databases including Elsevier, Scholar, PubMed, Springer, Web of Science, and CNKI. Acetylshikonin, pharmacology, toxicity, pharmacokinetics, and naphthoquinone derivative were used as key words. RESULTS: According to emerging evidence, acetylshikonin exerts a wide spectrum of pharmacological effects such as anticancer, anti-inflammatory, lipid-regulatory, antidiabetic, antibacterial, antifungal, antioxidative, neuroprotective, and antiviral properties. However, only a few studies have reported the adverse effects of acetylshikonin, with respect to reproductive toxicity and genotoxicity. Pharmacokinetic studies demonstrate that acetylshikonin is associated with a wide distribution and poor absorption. CONCLUSIONS: Although experimental data supports the beneficial effects of this compound, acetylshikonin cannot be considered as a therapy drug without further investigations, especially, on the toxicity and pharmacokinetics.


Subject(s)
Anthraquinones/pharmacology , Anthraquinones/pharmacokinetics , Anthraquinones/toxicity , Animals , Anthraquinones/chemistry , Boraginaceae/chemistry , Drugs, Chinese Herbal , Humans , Mice , Naphthoquinones , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats
6.
Phytother Res ; 34(2): 270-281, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31680350

ABSTRACT

Aloe-emodin is a naturally anthraquinone derivative and an active ingredient of Chinese herbs, such as Cassia occidentalis, Rheum palmatum L., Aloe vera, and Polygonum multiflorum Thunb. Emerging evidence suggests that aloe-emodin exhibits many pharmacological effects, including anticancer, antivirus, anti-inflammatory, antibacterial, antiparasitic, neuroprotective, and hepatoprotective activities. These pharmacological properties lay the foundation for the treatment of various diseases, including influenza virus, inflammation, sepsis, Alzheimer's disease, glaucoma, malaria, liver fibrosis, psoriasis, Type 2 diabetes, growth disorders, and several types of cancers. However, an increasing number of published studies have reported adverse effects of aloe-emodin. The primary toxicity among these reports is hepatotoxicity and nephrotoxicity, which are of wide concern worldwide. Pharmacokinetic studies have demonstrated that aloe-emodin has a poor intestinal absorption, short elimination half-life, and low bioavailability. This review aims to provide a comprehensive summary of the pharmacology, toxicity, and pharmacokinetics of aloe-emodin reported to date with an emphasis on its biological properties and mechanisms of action.


Subject(s)
Anthraquinones/pharmacology , Anthraquinones/pharmacokinetics , Anthraquinones/toxicity , Aloe/chemistry , Animals , Cassia/chemistry , Fallopia multiflora/chemistry , Humans , Rheum/chemistry
7.
Int J Mol Sci ; 19(9)2018 Sep 16.
Article in English | MEDLINE | ID: mdl-30223619

ABSTRACT

Functional ingredients in blueberry have the best health benefits. To obtain a better understanding of the health role of blueberry in chronic disease, we conducted systematic preventive strategies for functional ingredients in blueberry, based on comprehensive databases, especially PubMed, ISI Web of Science, and CNKI for the period 2008⁻2018. Blueberry is rich in flavonoids (mainly anthocyanidins), polyphenols (procyanidin), phenolic acids, pyruvic acid, chlorogenic acid, and others, which have anticancer, anti-obesity, prevent degenerative diseases, anti-inflammation, protective properties for vision and liver, prevent heart diseases, antidiabetes, improve brain function, protective lung properties, strong bones, enhance immunity, prevent cardiovascular diseases, and improve cognitive decline. The anthocyanins and polyphenols in blueberry are major functional ingredients for preventive chronic disease. These results support findings that blueberry may be one of the best functional fruits, and further reveals the mechanisms of anthocyanins and polyphenols in the health role of blueberry for chronic disease. This paper may be used as scientific evidence for developing functional foods, nutraceuticals, and novel drugs of blueberry for preventive chronic diseases.


Subject(s)
Blueberry Plants/chemistry , Chronic Disease/therapy , Dietary Supplements , Functional Food , Plant Extracts/pharmacology , Animals , Chronic Disease/prevention & control , Functional Food/analysis , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry
8.
Oxid Med Cell Longev ; 2018: 3232080, 2018.
Article in English | MEDLINE | ID: mdl-29849880

ABSTRACT

Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA), flavonoids, saponarin, lutonarin, superoxide dismutase (SOD), K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E), dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.


Subject(s)
Chronic Disease/therapy , Dietary Supplements/analysis , Herbal Medicine/methods , Hordeum/chemistry , Humans
9.
Article in English | MEDLINE | ID: mdl-28261311

ABSTRACT

Objectives. Functional components in alliums have long been maintained to play a key role in modifying the major risk factors for chronic disease. To obtain a better understanding of alliums for chronic disease prevention, we conducted a systematic review for risk factors and prevention strategies for chronic disease of functional components in alliums, based on a comprehensive English literature search that was conducted using various electronic search databases, especially the PubMed, ISI Web of Science, and CNKI for the period 2007-2016. Allium genus especially garlic, onion, and Chinese chive is rich in organosulfur compounds, quercetin, flavonoids, saponins, and others, which have anticancer, preventive cardiovascular and heart diseases, anti-inflammation, antiobesity, antidiabetes, antioxidants, antimicrobial activity, neuroprotective and immunological effects, and so on. These results support Allium genus; garlic and onion especially may be the promising dietotherapeutic vegetables and organopolysulfides as well as quercetin mechanism in the treatment of chronic diseases. This review may be used as scientific basis for the development of functional food, nutraceuticals, and alternative drugs to improve the chronic diseases.

10.
Environ Geochem Health ; 32(3): 165-77, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19554457

ABSTRACT

The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg(-1)) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg(-1), from 1,130 to 3,830 mg K kg(-1), from 61.8 to 488 mg Ca kg(-1), from 864 to 2,020 mg Mg kg(-1), from 0.40 to 147 mg Fe kg(-1), from 15.1 to 124 mg Zn kg(-1), from 0.10 to 59.1 mg Cu kg(-1), and from 6.7 to 26.6 mg Mn kg(-1). Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.


Subject(s)
Genetic Variation/genetics , Minerals/analysis , Oryza/chemistry , Oryza/genetics , Alleles , China , Genotype , Geography , Humans , Nitrogen/analysis , Oryza/classification , Phosphorus/analysis , Spectrophotometry, Atomic
11.
Ying Yong Sheng Tai Xue Bao ; 16(8): 1569-72, 2005 Aug.
Article in Chinese | MEDLINE | ID: mdl-16262081

ABSTRACT

Soil phosphorus (P) deficiency is a major yield-limiting factor in rice production. Employing 526 rice landrace accessions from 5 rice-planting regions and 16 prefectures in Yunnan Province, this paper studied their P-deficiency tolerance characteristics by comparing the relative plant dry weight under acid red soil condition. The results showed that Northwest Yunnan cold highland japonica rice-planting region was most abundant in P-deficiency tolerance core collection of indica, and there was no significant difference in japonica among five ecological zones of rice landraces. Nujiang, Lijiang, Dehong, Wenshan, Xishuangbana and Yuxi were most abundant in P-deficiency tolerance core collection of indica, and Lijiang, Wenshan and Chuxiong were most abundant in P-deficiency tolerance core collection of japonica. Indica had a higher P-deficiency tolerance than japonica. The P-deficiency tolerance of rice was significantly related with its genetic diversity, rice breeding and acid red soils.


Subject(s)
Oryza/genetics , Oryza/physiology , Phosphorus/metabolism , Soil/analysis , Breeding , China , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL