Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36881383

ABSTRACT

The NLRP3 inflammasome, which plays a central role in innate immunity, is linked to a variety of inflammatory diseases, and thus it may provide a new target for the treatment of those diseases. Biosynthesized silver nanoparticles (AgNPs), particularly those synthesized using medicinal plant extracts, have recently been shown to be a promising therapeutic option. Herein, the aqueous extract of Ageratum conyzoids was used to prepare a series of sized AgNPs (AC-AgNPs), in which the smallest mean particle size was 30 ± 1.3 nm with a polydispersity of 0.328 ± 0.009. The ζ potential value was -28.77 with a mobility of -1.95 ± 0.24 cm2/(v·s). Its main ingredient, elemental silver, accounted for about 32.71 ± 4.87% of its mass, and other ingredients included amentoflavone-7,7⁗-dimethyl ether, 1,3,5-tricaffeoylquinic acid, kaempferol 3,7,4'-triglucoside, 5,6,7,3',4',5'-hexamethoxyflavone, kaempferol, and ageconyflavone B. In LPS+ATP-stimulated RAW 264.7 and THP-1 cells, AC-AgNPs significantly inhibited the release of IL-1ß, IL-18, TNF-α, and caspase-1, indicating that AC-AgNPs can inhibit the activation of the NLRP3 inflammasome. The mechanistic study revealed that AC-AgNPs could decrease the phosphorylation levels of IκB-α and p65, resulting in decreased expression of NLRP3 inflammasome-related proteins, including pro-IL-1ß, IL-1ß, procaspase 1, caspase 1P20, NLRP3, and ASC, and also scavenge the level of intracellular ROS to prevent NLRP3 inflammasome assembly. Furthermore, AC-AgNPs attenuated the in vivo expression of inflammatory cytokines by suppressing NLRP3 inflammasome activation in a peritonitis mouse model. Our study provides evidence that the as-prepared AC-AgNPs can inhibit the inflammatory process by suppressing NLRP3 inflammasome activation and might be used to treat NLRP3 inflammasome-driven inflammatory diseases.

2.
J Ethnopharmacol ; 309: 116353, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36907476

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ageratum conyzoides L. (Asteraceae), a well-known and widely distributed traditional tropical medicinal herb, has been used to treat diverse diseases. Our preliminary research has shown that aqueous extracts of A. conyzoides leaf (EAC) have anti-inflammatory activity. However, the detailed underlying anti-inflammatory mechanism of EAC is still unclear. AIM OF THE STUDY: To determine the anti-inflammatory mechanism of action of EAC. MATERIALS AND METHODS: The major constituents of EAC were identified by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (UPLC-Q-TOF-MS/MS). LPS and ATP were used to activate the NLRP3 inflammasome in two types of macrophages (RAW 264.7 and THP-1 cells). The cytotoxicity of EAC was measured by the CCK8 assay. The levels of inflammatory cytokines and NLRP3 inflammasome-related proteins were detected by ELISA and western blotting (WB), respectively. The oligomerization of NLRP3 and ASC and the resulting inflammasome complex formation were observed by immunofluorescence. The intracellular reactive oxygen species (ROS) level was measured by flow cytometry. Finally, an MSU-induced peritonitis model was established to evaluate the anti-inflammatory effects of EAC in vivo. RESULTS: Twenty constituents were identified in the EAC. Kaempferol 3,7-diglucoside, 1,3,5-tricaffeoylquinic acid, and kaempferol 3,7,4'-triglucoside were found to be the most potent ingredients. EAC significantly reduced the levels of IL-1ß, IL-18, TNF-α, and caspase-1 in the two types of activated macrophages, implying that EAC can inhibit the activation of the NLRP3 inflammasome. A mechanistic study revealed that EAC inhibited NLRP3 inflammasome activation by blocking NF-κB signalling pathway activation and scavenging the level of intracellular ROS to prevent NLRP3 inflammasome assembly in macrophages. Furthermore, EAC attenuated the in vivo expression of inflammatory cytokines by suppressing NLRP3 inflammasome activation in a peritonitis mouse model. CONCLUSION: Our results demonstrated that EAC inhibited inflammation by suppressing NLRP3 inflammasome activation, highlighting that this traditional herbal medicine might be used to treat NLRP3 inflammasome-driven inflammatory diseases.


Subject(s)
Ageratum , Peritonitis , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kaempferols/therapeutic use , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Peritonitis/chemically induced , Peritonitis/drug therapy , Interleukin-1beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL