Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nutrients ; 14(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956324

ABSTRACT

(1) Background: The management goal for patients with essential hypertension (HTN) is not only to lower blood pressure (BP), but also to control increased heart rate (HR). In a previous study, it was found that dietary fiber (DF) supplementation can effectively reduce BP in patients with HTN. The aim of this study was to determine whether a DF supplement can lower HR in patients with HTN. (2) Methods: Seventy patients who met the inclusion and exclusion criteria were randomly allocated into the control group (n = 34) and the intervention group (n = 36). The regular DASH dietary care was delivered to both groups of patients. In addition, one bag of oat bran (30 g/d, containing DF 8.9 g) was delivered to the intervention group. The 24 h ambulatory heart rate was measured at baseline and 3 months. (3) Results: At 3 months, the 24 h maximum heart rate (24h maxHR) in the intervention group was significantly lower than that in the control group. After the intervention, within-group comparisons in the intervention group revealed that there were significant reductions in the 24 h average heart rate (24h aveHR), 24h maxHR, average heart rate during day time (D-aveHR), minimum heart rate during day time (D-minHR), and maximum heart rate during day time (D-maxHR). Similar differences were not found in the control group. (4) Conclusions: Dietary fiber (oat bran) supplementation might be beneficial in lowering HR in patients with HTN.


Subject(s)
Avena , Hypertension , Cholesterol, HDL , Diet , Dietary Fiber , Dietary Supplements , Heart Rate , Humans , Hypertension/drug therapy
2.
Int J Nanomedicine ; 16: 6797-6806, 2021.
Article in English | MEDLINE | ID: mdl-34675508

ABSTRACT

PURPOSE: Photothermal therapy (PTT) is promising for the treatment of tumors due to its advantages including minimally invasive, easy implementation and selective localized treatment. However, single PTT suffers from several limitations, such as constrained light penetration and low delivery efficiency, typically leading to heterogeneous heating and incomplete elimination of cancer cells. Therefore, combination of PTT with other therapies, eg, chemotherapy is desirable in order to achieve synergistic effects in cancer treatment. METHODS: Here, we designed a new type of TCPP-Iso combined nanoparticle for synergetic therapy for breast cancer. Specifically, photothermal agent tetra(4-carboxyphenyl) porphine (TCPP) and anti-cancer drug isoliensinine (Iso) were encapsulated in PEG-b-PLGA polymeric nanoparticles through a precipitation process. RESULTS: The obtained NPs displayed well-controlled size and high stability over time. Tuning TCPP-Iso/polymer ratio, or total concentration of drug and polymers led to increased hydrodynamic radius of NPs from 65 to 108 nm without disturbing the narrow size distribution. Besides, the formed NPs showed a consequently cumulative release of TCPP and of Iso. The temperature elevation ability of both TCPP NPs and TCPP-Iso NPs was TCPP-concentration dependent. Solutions of TCPP NPs that contained equivalent amount of TCPP with respect to TCPP-Iso NPs, presented the same trend and exhibited non-obvious difference in temperature elevation under certain laser power. The viability of MDA-MB-231 cells treated with TCPP-Iso NPs could be inhibited effectively at a relatively mild temperature (42-43°C) compared to the other groups, which may minimize heat damage to the surrounding healthy tissues. CONCLUSION: The results indicate that the TCPP-Iso combined NPs showed hardly any toxicity to normal tissue cell line, but displayed an efficient synergistic effect for killing cancer cells under laser irradiation. Our study demonstrates that the successful combination of TCPP and Iso realized a synergistic therapy effect at a relatively mild temperature, and the insights obtained here shall be helpful for designing new combined PTT agents for cancer treatment.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Cell Line, Tumor , Isoquinolines , Phototherapy , Photothermal Therapy , Porphyrins , Temperature
3.
Appl Microbiol Biotechnol ; 104(1): 119-130, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776607

ABSTRACT

L-Theanine is a unique non-protein amino acid found in tea plants that has been shown to possess numerous functional properties relevant to food science and human nutrition. L-Theanine has been commercially developed as a valuable additive for use in food and beverages, and its market is expected to expand substantially if the production cost can be lowered. Although the enzymatic approach holds considerable potential for use in L-theanine production, demand exists for developing more tractable methods (than those currently available) that can be implemented under mild conditions and will reduce operational procedures and cost. Here, we sought to engineer fermentative production of L-theanine in Corynebacterium glutamicum, an industrially safe host. For L-theanine synthesis, we used γ-glutamylmethylamide synthetase (GMAS), which catalyzes the ATP-dependent ligation of L-glutamate and ethylamine. First, distinct GMASs were expressed in C. glutamicum wild-type ATCC 13032 strain and GDK-9, an L-glutamate overproducing strain, to produce L-theanine upon ethylamine addition to the hosts. Second, the L-glutamate exporter in host cells was disrupted, which markedly increased the L-theanine titer in GDK-9 cells and almost eliminated the accumulation of L-glutamate in the culture medium. Third, a chromosomally gmasMm-integrated L-alanine producer was constructed and used, attempting to synthesize ethylamine endogenously by expressing plant-derived L-serine/L-alanine decarboxylases; however, these enzymes showed no L-alanine decarboxylase activity under our experimental conditions. The optimal engineered strain that we ultimately created produced ~ 42 g/L L-theanine, with a yield of 19.6%, in a 5-L fermentor. This is the first report of fermentative production of L-theanine achieved using ethylamine supplementation.


Subject(s)
Corynebacterium glutamicum/metabolism , Fermentation , Glutamates/biosynthesis , Metabolic Engineering/methods , Adenosine Triphosphate/metabolism , Carbon-Nitrogen Ligases/metabolism , Ethylamines/metabolism , Glutamic Acid/metabolism , Industrial Microbiology
4.
Article in English | MEDLINE | ID: mdl-31871473

ABSTRACT

Since the herb pair Huang Lian-Gan Jiang (HL-GJ) was put forward as conventional compatibility for cold-heat regulation in the middle energizer in the theory of Traditional Chinese Medicine (TCM), their therapeutic effects were observed on the prevention and treatment of intestinal inflammation and tumors including colorectal cancer (CRC). However, the active compounds, crucial targets, and related pathways of HL-GJ against CRC remained unclear. The purpose of this research was to establish a comprehensive and systemic approach that could identify the active compounds, excavate crucial targets, and reveal anti-CRC mechanisms of HL-GJ against CRC based on network pharmacology. We used methods including chemical compound screening based on absorption, distribution, metabolism, and excretion (ADME), compound target prediction, CRC target collection, network construction and analysis, Gene Ontology (GO), and pathway analysis. In this study, eight main active compounds of HL-GJ were identified, including Gingerenone C, Isogingerenone B, 5,8-dihydroxy-2-(2-phenylethyl) Chromone, 2,3,4-trihydroxy-benzenepropanoic acid, 3,4-dihydroxyphenylethyl Alcohol Glucoside, 3-carboxy-4-hydroxy-phenoxy Glucoside, Moupinamide, and Obaculactone. HRAS, KRAS, PIK3CA, PDE5A, PPARG, TGFBR1, and TGFBR2 were identified as crucial targets of HL-GJ against CRC. There were mainly 500 biological processes and 70 molecular functions regulated during HL-GJ against CRC (P < 0.001). There were mainly 162 signaling pathways contributing to therapeutic effects (P < 0.001), the top 10 of which included DAP12 signaling, signaling by PDGF, signaling by EGFR, NGF signaling via TRKA from the plasma membrane, signaling by NGF, downstream signal transduction, DAP12 interactions, signaling by VEGF, signaling by FGFR3, and signaling by FGFR4. The study established a comprehensive and systematic paradigm to understand the pharmacological mechanisms of multiherb compatibility such as an herb pair, which might accelerate the development and modernization of TCM.

5.
Article in English | MEDLINE | ID: mdl-30584453

ABSTRACT

As the fifth most common type of malignant cancers globally, hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. As a long-time medicinal herb in Traditional Chinese Medicine (TCM), Scutellariae Barbatae Herba (SBH) has also been used for treating various cancers including HCC, but its underlying mechanisms have not been completely clarified. Presently, an innovative network-pharmacology platform was introduced to systematically elucidate the pharmacological mechanisms of SBH against HCC, adopting active ingredients prescreening, target fishing, and network analysis. The results revealed that SBH appeared to work on HCC probably through regulating 4 molecular functions, 20 biological processes, and hitting on 21 candidate targets involved in 40 pathways. By in-depth analysis of the first-ranked signaling pathway and hit genes, only TTR was highly and specially expressed in the liver tissue. TTR might play a crucial role in neutrophil degranulation pathway during SBH against HCC. Hence, TTR might become a therapeutic target of HCC. The study investigated the anti-hepatoma mechanisms of SBH from a holistic perspective, which provided a theoretical foundation for further experimental research and rational clinical application of SBH.

6.
Bioprocess Biosyst Eng ; 39(6): 967-76, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26946492

ABSTRACT

Production of L-glutamate using a biotin-deficient strain of Corynebacterium glutamicum has a long history. The process is achieved by controlling biotin at suboptimal dose in the initial fermentation medium, meanwhile feeding NH4OH to adjust pH so that α-ketoglutarate (α-KG) can be converted to L-glutamate. In this study, we deleted glutamate dehydrogenase (gdh1 and gdh2) of C. glutamicum GKG-047, an L-glutamate overproducing strain, to produce α-KG that is the direct precursor of L-glutamate. Based on the method of L-glutamate fermentation, we developed a novel double-phase pH and biotin control strategy for α-KG production. Specifically, NH4OH was added to adjust the pH at the bacterial growth stage and NaOH was used when the cells began to produce acid; besides adding an appropriate amount of biotin in the initial medium, certain amount of additional biotin was supplemented at the middle stage of fermentation to maintain a high cell viability and promote the carbon fixation to the flux of α-KG production. Under this control strategy, 45.6 g/L α-KG accumulated after 30-h fermentation in a 7.5-L fermentor and the productivity and yield achieved were 1.52 g/L/h and 0.42 g/g, respectively.


Subject(s)
Biotin/metabolism , Corynebacterium glutamicum/metabolism , Ketoglutaric Acids/metabolism , Corynebacterium glutamicum/enzymology , Culture Media , Fermentation , Glutamate Dehydrogenase/genetics , Hydrogen-Ion Concentration
7.
Nat Commun ; 4: 1470, 2013.
Article in English | MEDLINE | ID: mdl-23403571

ABSTRACT

Motivated by the premise that superconductivity in iron-based superconductors is unconventional and mediated by spin fluctuations, an intense research effort has been focused on characterizing the spin-excitation spectrum in the magnetically ordered parent phases of the Fe pnictides and chalcogenides. For these undoped materials, it is well established that the spin-excitation spectrum consists of sharp, highly dispersive magnons. The fate of these high-energy magnetic modes upon sizable doping with holes is hitherto unresolved. Here we demonstrate, using resonant inelastic X-ray scattering, that optimally hole-doped superconducting Ba(0.6)K(0.4)Fe(2)As(2) retains well-defined, dispersive high-energy modes of magnetic origin. These paramagnon modes are softer than, though as intense as, the magnons of undoped antiferromagnetic BaFe(2)As(2). The persistence of spin excitations well into the superconducting phase suggests that the spin fluctuations in Fe-pnictide superconductors originate from a distinctly correlated spin state. This connects Fe pnictides to cuprates, for which, in spite of fundamental electronic structure differences, similar paramagnons are present.

8.
Nat Commun ; 2: 580, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22146399

ABSTRACT

The parent compounds of iron pnictide superconductors are bad metals with a collinear antiferromagnetic structure and Néel temperatures below 220 K. Although alkaline iron selenide A(y)Fe(1.6+x)Se(2) (A=K, Rb, Cs) superconductors are isostructural with iron pnictides, in the vicinity of the undoped limit they are insulators, forming a block antiferromagnetic order and having Néel temperatures of roughly 500 K. Here we show that the spin waves of the insulating antiferromagnet Rb(0.89)Fe(1.58)Se(2) can be accurately described by a local moment Heisenberg Hamiltonian. A fitting analysis of the spin wave spectra reveals that the next-nearest neighbour couplings in Rb(0.89)Fe(1.58)Se(2), (Ba,Ca,Sr)Fe(2)As(2), and Fe(1.05)Te are of similar magnitude. Our results suggest a common origin for the magnetism of all the Fe-based superconductors, despite having different ground states and antiferromagnetic orderings.


Subject(s)
Chemistry, Physical , Ferrous Compounds/chemistry , Iron/chemistry , Magnetics/methods , Crystallography, X-Ray , Electric Conductivity , Electrons , Molecular Structure , Rubidium/chemistry , Selenium/chemistry , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL