Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Eur J Nutr ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512357

ABSTRACT

PURPOSE: The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota. METHOD: A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology. RESULTS: The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group. CONCLUSION: The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body's digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.

2.
Food Chem ; 443: 138513, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38277933

ABSTRACT

Quantitative analysis of the quality constituents of Lonicera japonica (Jinyinhua [JYH]) using a feasible method provides important information on its evaluation and applications. Limitations of sample pretreatment, experimental site, and analysis time should be considered when identifying new methods. In response to these considerations, Raman spectroscopy combined with deep learning was used to establish a quantitative analysis model to determine the quality of JYH. Chlorogenic acid and total flavonoids were identified as analysis targets via network pharmacology. High performance liquid chromatograph and ultraviolet spectroscopy were used to construct standard curves for quantitative analysis. Raman spectra of JYH extracts (1200) were collected. Subsequently, models were built using partial least squares regression, Support Vector Machine, Back Propagation Neural Network, and One-dimensional Convolutional Neural Network (1D-CNN). Among these, the 1D-CNN model showed superior prediction capability and had higher accuracy (R2 = 0.971), and lower root mean square error, indicating its suitability for rapid quantitative analysis.


Subject(s)
Drugs, Chinese Herbal , Lonicera , Lonicera/chemistry , Spectrum Analysis, Raman , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Chlorogenic Acid/analysis
3.
Nutrition ; 115: 112148, 2023 11.
Article in English | MEDLINE | ID: mdl-37541145

ABSTRACT

OBJECTIVES: Buckwheat quercetin (QUE) was used as a dietary supplement to investigate the mechanism of QUE on the regulation of lipid metabolism and intestinal flora in hyperlipidemic rats. METHODS: Here, using a high-fat diet-induced hyperlipidemia model, the intervention was carried out by gavage of QUE at doses of 50, 100, and 200 mg/kg. Serum lipid levels, liver biochemical parameters, and histopathologic changes in the liver and intestinal microorganisms were measured in rats by enzyme-linked immunosorbent assay, hematoxylin-eosin, and high-throughput sequencing, respectively. RESULTS: Our results found that QUE, at a dose of 200 mg/kg, significantly reduced body weight, liver index, and lipid levels in rats (P < 0.05); improved hepatic oxidative stress; and repaired liver injury. In addition, the upregulation of beneficial bacteria, such as christensenellaceae and Bifidobacterium, in the organism increased the content of short-chain fatty acids, thus interfering with intestinal pH and improving the intestinal environment, while downregulating the relative abundance of Proteobacteria and Eubacterium_coprostanoligenes_group, and regulating the overproduction of butyrate. The real-time fluorescence quantitative polymerase chain reaction results found that QUE inhibited the expression of Toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA content and blocked the activation of the TLR4/NF-κB signaling pathway, thus affecting the downregulation of lipid levels and restoring intestinal homeostasis. CONCLUSIONS: A QUE dose of 200 mg/kg may improve lipid levels and the composition of intestinal flora through the TLR4/NF-κB pathway, suggesting that proteobacteria and christensenellaceae abundance changes may be biomarkers of potential diseases.


Subject(s)
Fagopyrum , Gastrointestinal Microbiome , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Fagopyrum/metabolism , Quercetin/pharmacology , Lipid Metabolism , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Lipids
4.
Front Nutr ; 9: 952738, 2022.
Article in English | MEDLINE | ID: mdl-36147303

ABSTRACT

Buckwheat has beneficial effects on human intestinal health, which is often compounded with wheat to make food. Therefore, the effect of cereals mixture via in vitro fermentation on gut microbes and short-chain fatty acids (SCFAs) were investigated in this study. The mixture of wheat and tartary buckwheat (WT) produced more lactate and acetate, and the mixture of wheat and sweet buckwheat (WE) produced more propionate and butyrate. Compared with wheat (WA), the relative abundance of some beneficial bacteria significantly increased, such as Sutterella in WT and Faecalibacterium in WE. Cereals mixture also affected the expression of functional genes, involved in metabolic pathways and carbohydrate-active enzymes (CAZymes) that modulated SCFAs generation. This study provides new insights into the effects of sweet and tartary buckwheat on intestinal function, which is beneficial to applying both types of buckwheat in practical.

5.
Article in English | MEDLINE | ID: mdl-32849902

ABSTRACT

Two novel compounds, 2-(2-hydroxyethylthio)-5,8-dimethoxy-1,4-naphthoquinone (HEDMNQ) and 2-(6-hydroxyhexylthio)-5,8-dimethoxy-1,4-naphthoquinone (HHDMNQ), were synthesized to investigate the kill effects and mechanism of 1,4-naphthoquinone derivatives in lung cancer cells. The results of the CCK-8 assay showed that HEDMNQ and HHDMNQ had significant cytotoxic effects on A549, NCI-H23, and NCI-H460 NSCLC cells. Flow cytometry and western blot results indicated that HHDMNQ induced A549 cell cycle arrest at the G2/M phase by decreasing the expression levels of cyclin-dependent kinase 1/2 and cyclin B1. Fluorescence microscopy and flow cytometry results indicated that HHDMNQ could induce A549 cell apoptosis, and western blot analysis showed that HHDMNQ induced apoptosis through regulating the mitochondria pathway, as well as the MAPK, STAT3, and NF-κB signalling pathways. Flow cytometry results showed that intracellular reactive oxygen species (ROS) levels were increased after HHDMNQ treatment, and western blot showed that ROS could modulate the intrinsic pathway and MAPK, STAT3, and NF-κB signalling pathways. These effects were blocked by the ROS inhibitor N-acetyl-L-cysteine in A549 cells. Our findings suggest that compared with HEDMNQ, HHDMNQ had the stronger ability to inhibit the cell viability of lung cancer cells and induce apoptosis by regulating the ROS-mediated intrinsic pathway and MAPK/STAT3/NF-κB signalling pathways. Thus, HHDMNQ might be a potential antitumour compound for treating lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL