Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1251838, 2023.
Article in English | MEDLINE | ID: mdl-37842299

ABSTRACT

Background: Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decrease in bone mineral density (BMD) and an increase in the risk of fracture. The level of selenium (Se) in serum is associated with BMD. However, the relationship between dietary and total selenium intake and parameters such as osteoporosis and BMD is unclear. By conducting National Health and Nutritional Examination Surveys (NHANES), in this study, we assessed the association of Se intake with BMD and the risk of OP among general middle-aged and elderly people. Methods: The data were collected from three cycles of NHANES [2009-2010, 2013-2014, and 2017-2020]. Information on the dietary and supplementary Se intake was obtained from 24-h dietary recall interviews. Additionally, dual-energy X-ray absorptiometry (DXA) was performed to measure BMD, which was later transformed into T-scores; OP was diagnosed when the T-score was ≤ -2.5. We constructed a logistic regression model for the association between selenium intake and the risk of OP based on the estimated odds ratios (ORs) and the 95% confidence intervals (CIs). We also constructed a multivariable linear regression model to analyze the relationship between selenium intake and BMD. Results: In this study, 3,250 individuals (average age: 60.01 ± 10.09 years; 51.88% females) participated. The incidence of OP was 9.35% (3.30% for males and 17.75% for females). In the logistic regression model adjusted for every interested covariate, a higher quartile of dietary Se intake (OR for quartile 4 vs. quartile 1: 0.63; 95% CI: 0.41-0.96; P for trend = 0.027) was related to a lower risk of OP relative to the lowest quartile. The total selenium intake also exhibited a consistent trend (OR for quartile 4 vs. quartile 1: 0.67; 95% CI: 0.44-1.01; P for trend = 0.049). The results of the adjusted multivariate linear regression model showed that the participants with the highest quartile of dietary Se intake (Q4) had higher BMD in the total femur (ß = 0.069, P = 0.001; P for trend = 0.001), femoral neck (ß = 0.064, P = 0.001; P for trend = 0.001), and total spine (ß = 0.030, P = 0.136; P for trend = 0.064) compared to those in quintile 1 (Q1). A similar trend of associations was observed for the total selenium intake with BMD, which was more prominent among females, as determined by the subgroup analysis. Conclusion: In this study, the dietary intake and total intake of selenium were positively associated with BMD, whereas they were negatively associated with the risk of OP among adults in the US. Further studies are required to verify our results and elucidate the associated biological mechanism.


Subject(s)
Osteoporosis , Selenium , Adult , Aged , Male , Middle Aged , Female , Humans , Bone Density , Nutrition Surveys , Osteoporosis/epidemiology , Osteoporosis/etiology , Nutritional Status
2.
Sci Total Environ ; 854: 158539, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36075407

ABSTRACT

The accumulation and volatilization of Se by algae in surface water are important parts of the biogeochemical cycle of selenium but are also variable and complex. Experiments with 5-8 day of exposure under various temperatures, solution pH values, lighting regimes, and different initial Se concentrations were carried out to study the change in Se accumulation and volatilization behavior of algae. The study showed that algae accumulated and volatilized more Se under harsher environments, such as a lower pH, a shorter lighting time, and a higher Se load. The maximum average daily volatilization rate of Se was 234 ± 23 µg Se (g algae·d)-1, much greater than the values of previous studies. Therefore, in some Se-polluted water environments, when the pH of lakes is acidic, Se emissions to the atmosphere are much higher than currently estimated. Both the accumulation rate (Raccu) and volatilization rate (Rvol) of Se by algae were significantly negatively correlated with final pH, final OD, and residual Se in solution (Cres). Moreover, multiple linear regression equations were used to estimate the rates of Se accumulation and volatilization. This study provides theoretical basis data to quantify the contribution of selenium metabolism by algae to selenium biogeochemistry and a technical reference for the treatment of Se-containing wastewater.


Subject(s)
Microalgae , Selenium , Selenious Acid , Microalgae/metabolism , Selenium/metabolism , Volatilization , Plants/metabolism , Lakes , Water
SELECTION OF CITATIONS
SEARCH DETAIL