Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Food Res Int ; 165: 112510, 2023 03.
Article in English | MEDLINE | ID: mdl-36869514

ABSTRACT

The aim of this study was to prepare conjugates of casein (CA) with pectin (CP) or arabinogalactan (AG) by the Maillard reaction (wet-heating) and to investigate the effects of CP or AG on the structural and functional properties of casein. The results indicated that the highest grafting degree of CA with CP or AG was observed at 90 °C for 1.5 h or 1 h, respectively. Secondary structure showed that grafting with CP or AG reduced the α-helix level and increased the random coil level of CA. Glycosylation treatment of CA-CP and CA-AG exhibited lower surface hydrophobicity and higher absolute ζ-potential values, further significantly improving the functional properties of CA (e.g., solubility, foaming property, emulsifying property, thermal stability, and antioxidant activity). Accordingly, our results indicated that it is feasible for CP or AG to improve the functional properties of CA by the Maillard reaction.


Subject(s)
Maillard Reaction , Pectins , Caseins , Galactans
2.
Int J Biol Macromol ; 232: 123477, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36731705

ABSTRACT

Probiotics have demonstrated various bioactive functions but poor storage and application stability, and encapsulation a promising method of increasing its viability. In this study, whey protein concentrate (WPC) and pectin (PEC) formed non-covalent complexes through electrostatic interaction at pH 3.0. The formed WPC-PEC complexes showed superior particle size, absolute potential, emulsification properties, and structural changes when PEC concentration was >0.8 % (w/v). This made them appropriate as a hydrophilic emulsifier to stabilize W/O/W emulsions. Then, Lacticaseibacillus rhamnosus, one representative of probiotics, was encapsulated in the internal aqueous phase of W/O/W emulsions. We obtained higher encapsulation efficiency (78.49 %) and smaller D4,3 (9.72 µm) with 0.8 % (w/v) PEC concentration. Encapsulation of Lacticaseibacillus rhamnosus in W/O/W emulsions improved its viability under harsh conditions, including 28 days storage at 4 °C, simulated pasteurization, and simulated gastrointestinal digestion. W/O/W emulsions stabilized by WPC-PEC non-covalent complexes further improved the survival of Lacticaseibacillus rhamnosus against various adverse conditions as compared to WPC. These findings suggest that the studied W/O/W emulsions systems have the potential to deliver probiotics in food substrates to enhance their viability during production processing, storage transportation, and digestion.


Subject(s)
Lacticaseibacillus rhamnosus , Pectins , Pectins/chemistry , Whey Proteins/chemistry , Emulsions/chemistry , Lacticaseibacillus , Pasteurization
3.
J Bone Miner Res ; 37(5): 983-996, 2022 05.
Article in English | MEDLINE | ID: mdl-35220602

ABSTRACT

Enchondromas and chondrosarcomas are common cartilage neoplasms that are either benign or malignant, respectively. The majority of these tumors harbor mutations in either IDH1 or IDH2. Glutamine metabolism has been implicated as a critical regulator of tumors with IDH mutations. Using genetic and pharmacological approaches, we demonstrated that glutaminase-mediated glutamine metabolism played distinct roles in enchondromas and chondrosarcomas with IDH1 or IDH2 mutations. Glutamine affected cell differentiation and viability in these tumors differently through different downstream metabolites. During murine enchondroma-like lesion development, glutamine-derived α-ketoglutarate promoted hypertrophic chondrocyte differentiation and regulated chondrocyte proliferation. Deletion of glutaminase in chondrocytes with Idh1 mutation increased the number and size of enchondroma-like lesions. In contrast, pharmacological inhibition of glutaminase in chondrosarcoma xenografts reduced overall tumor burden partially because glutamine-derived non-essential amino acids played an important role in preventing cell apoptosis. This study demonstrates that glutamine metabolism plays different roles in tumor initiation and cancer maintenance. Supplementation of α-ketoglutarate and inhibiting GLS may provide a therapeutic approach to suppress enchondroma and chondrosarcoma tumor growth, respectively. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Neoplasms , Chondroma , Chondrosarcoma , Glutamine , Isocitrate Dehydrogenase , Mutation , Animals , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cartilage/metabolism , Chondroma/genetics , Chondroma/metabolism , Chondroma/pathology , Chondrosarcoma/genetics , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/genetics , Glutamine/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids , Mice
4.
Nat Nanotechnol ; 16(10): 1150-1160, 2021 10.
Article in English | MEDLINE | ID: mdl-34354264

ABSTRACT

Although nanomaterials have shown promising biomedical application potential, incomplete understanding of their molecular interactions with biological systems prevents their inclusion into mainstream clinical applications. Here we show that black phosphorus (BP) nanomaterials directly affect the cell cycle's centrosome machinery. BP destabilizes mitotic centrosomes by attenuating the cohesion of pericentriolar material and consequently leads to centrosome fragmentation within mitosis. As a result, BP-treated cells exhibit multipolar spindles and mitotic delay, and ultimately undergo apoptosis. Mechanistically, BP compromises centrosome integrity by deactivating the centrosome kinase polo-like kinase 1 (PLK1). BP directly binds to PLK1, inducing its aggregation, decreasing its cytosolic mobility and eventually restricting its recruitment to centrosomes for activation. With this mechanism, BP nanomaterials show great anticancer potential in tumour xenografted mice. Together, our study reveals a molecular mechanism for the tumoricidal properties of BP and proposes a direction for biomedical application of nanomaterials by exploring their intrinsic bioactivities.


Subject(s)
Cell Cycle Proteins/genetics , Centrosome/drug effects , Nanostructures/chemistry , Neoplasms/drug therapy , Phosphorus/pharmacology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Animals , Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , HeLa Cells , Heterografts , Humans , Mice , Mitosis/drug effects , Neoplasms/genetics , Neoplasms/pathology , Phosphorus/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Polo-Like Kinase 1
5.
ACS Appl Mater Interfaces ; 13(31): 36824-36838, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34314148

ABSTRACT

Although immuno-oncotherapy in clinic has gained great success, the immunosuppressive tumor microenvironment (TME) existing in the "cold" tumor with insufficient and exhausted lymphocytes may result in a lower-than-expected therapeutic efficiency. Therefore, a properly designed synergistic strategy that can effectively turn the "cold" tumor to "hot" should be considered to improve the therapeutic effects of immuno-oncotherapy. Herein, TME-responsive penetrating nanogels (NGs) were developed, which can improve the delivery and penetration of the co-loaded resiquimod (R848) and green tea catechin (EGCG) in tumors by a nano-sized controlled releasing system of the soluble cyclodextrin-drug inclusion complex. Consequently, the NGs effectively promoted the maturation of dendritic cells, stimulated the cytotoxic T lymphocytes (CTLs), and decreased the PD-L1 expression in tumors. The combination of NGs with the OX40 agonist (αOX40) further synergistically enhanced the activation and infiltration of CTLs into the deep tumor and inhibited the suppression effects from the regulatory T cells (Tregs). As a result, an increased ratio of active CTLs to Tregs in tumors (20.66-fold) was achieved with a 91.56% tumor suppression effect, indicating a successful switch of "cold" tumors to "hot" for an immunologically beneficial TME with significantly improved anti-tumor immune therapeutics. This strategy could be tailored to other immuno-oncotherapeutic approaches to solve the urgent efficiency concerns of the checkpoint-based treatment in clinic.


Subject(s)
Antineoplastic Agents/therapeutic use , Catechin/therapeutic use , Drug Carriers/chemistry , Imidazoles/therapeutic use , Nanogels/chemistry , Neoplasms/drug therapy , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , B7-H1 Antigen/metabolism , Catechin/chemistry , Catechin/pharmacokinetics , Cell Line, Tumor , Dendritic Cells/drug effects , Drug Carriers/pharmacokinetics , Drug Liberation , Female , Hyaluronic Acid/analogs & derivatives , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Immunomodulation , Mice, Inbred C57BL , Neoplasms/metabolism , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Regulatory/drug effects , Tumor Microenvironment/drug effects
6.
Mol Plant ; 14(3): 470-487, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33309900

ABSTRACT

Seed oil content (SOC) is a highly important and complex trait in oil crops. Here, we decipher the genetic basis of natural variation in SOC of Brassica napus by genome- and transcriptome-wide association studies using 505 inbred lines. We mapped reliable quantitative trait loci (QTLs) that control SOC in eight environments, evaluated the effect of each QTL on SOC, and analyzed selection in QTL regions during breeding. Six-hundred and ninety-two genes and four gene modules significantly associated with SOC were identified by analyzing population transcriptomes from seeds. A gene prioritization framework, POCKET (prioritizing the candidate genes by incorporating information on knowledge-based gene sets, effects of variants, genome-wide association studies, and transcriptome-wide association studies), was implemented to determine the causal genes in the QTL regions based on multi-omic datasets. A pair of homologous genes, BnPMT6s, in two QTLs were identified and experimentally demonstrated to negatively regulate SOC. This study provides rich genetic resources for improving SOC and valuable insights toward understanding the complex machinery that directs oil accumulation in the seeds of B. napus and other oil crops.


Subject(s)
Brassica napus/metabolism , Genome, Plant/genetics , Genome-Wide Association Study/methods , Quantitative Trait Loci/genetics , Brassica napus/genetics , Plant Oils/metabolism , Seeds/metabolism , Transcriptome/genetics
7.
J Agric Food Chem ; 68(18): 5118-5128, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32309947

ABSTRACT

Fucoxanthin (Fx), an allenic carotenoid from brown seaweeds or diatoms, has been demonstrated to prevent obesity. Gut dysbiosis and inflammation are two counted important incidence reasons of obesity and related diseases. In this paper, a mouse model induced by high-fat diet (HFD) was used to reveal the role of Fx in modulating intestinal homeostasis and treating obesity. In addition, 16S rRNA sequencing results inferred that Fx alleviated HFD-induced gut microbiota dysbiosis by significantly inhibiting the growth of obesity-/inflammation-related Lachnospiraceae and Erysipelotrichaceae while promoting the growth of Lactobacillus/Lactococcus, Bifidobacterium, and some butyrate-producing bacteria. The correlation analysis showed that some gut microbiota taxa were strongly correlated with obesity phenotypes and the inflammation level. In conclusion, dietary Fx has the potential to alleviate the development of obesity and related symptoms through mediating the composition of gut microbiota as demonstrated in mice. This study provides scientific evidence for the potential effects of Fx on obesity treatment.


Subject(s)
Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Obesity/microbiology , Plant Extracts/administration & dosage , Xanthophylls/administration & dosage , Animals , Diet, High-Fat/adverse effects , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Seaweed/chemistry
9.
Am J Physiol Endocrinol Metab ; 315(4): E622-E633, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30016154

ABSTRACT

High concentrations of propionate and its metabolites are found in several diseases that are often associated with the development of cardiac dysfunction, such as obesity, diabetes, propionic acidemia, and methylmalonic acidemia. In the present work, we employed a stable isotope-based metabolic flux approach to understand propionate-mediated perturbation of cardiac energy metabolism. Propionate led to accumulation of propionyl-CoA (increased by ~101-fold) and methylmalonyl-CoA (increased by 36-fold). This accumulation caused significant mitochondrial CoA trapping and inhibited fatty acid oxidation. The reduced energy contribution from fatty acid oxidation was associated with increased glucose oxidation. The enhanced anaplerosis of propionate and CoA trapping altered the pool sizes of tricarboxylic acid cycle (TCA) metabolites. In addition to being an anaplerotic substrate, the accumulation of proprionate-derived malate increased the recycling of malate to pyruvate and acetyl-CoA, which can enter the TCA for energy production. Supplementation of 3 mM l-carnitine did not relieve CoA trapping and did not reverse the propionate-mediated fuel switch. This is due to new findings that the heart appears to lack the specific enzyme catalyzing the conversion of short-chain (C3 and C4) dicarboxylyl-CoAs to dicarboxylylcarnitines. The discovery of this work warrants further investigation on the relevance of dicarboxylylcarnitines, especially C3 and C4 dicarboxylylcarnitines, in cardiac conditions such as heart failure.


Subject(s)
Carnitine/pharmacology , Coenzyme A/metabolism , Energy Metabolism/drug effects , Heart/drug effects , Myocardium/metabolism , Propionates/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Animals , Citric Acid Cycle/drug effects , Citric Acid Cycle/physiology , Energy Metabolism/physiology , Fatty Acids/metabolism , Glucose/metabolism , Isolated Heart Preparation , Liver/metabolism , Malates/metabolism , Male , Metabolic Flux Analysis , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Oxidation-Reduction/drug effects , Pyruvic Acid/metabolism , Rats
10.
Acta Biol Hung ; 66(4): 449-59, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26616376

ABSTRACT

Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophosphates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassiumsolubilizing bacteria in Moso Bamboo.


Subject(s)
Bacteria/classification , Phosphorus/metabolism , Poaceae/microbiology , Potassium/metabolism , Bacteria/metabolism , Biodiversity , Endophytes/classification , Endophytes/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics
11.
Nat Biotechnol ; 25(11): 1277-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17934451

ABSTRACT

Rice, the world's major staple crop, is a poor source of essential micronutrients, including folates (vitamin B9). We report folate biofortification of rice seeds achieved by overexpressing two Arabidopsis thaliana genes of the pterin and para-aminobenzoate branches of the folate biosynthetic pathway from a single locus. We obtained a maximal enhancement as high as 100 times above wild type, with 100 g of polished raw grains containing up to four times the adult daily folate requirement.


Subject(s)
Folic Acid/biosynthesis , Folic Acid/genetics , Food, Fortified , Oryza/genetics , Oryza/metabolism , Plants, Genetically Modified , 4-Aminobenzoic Acid/metabolism , Arabidopsis/genetics , Genes, Plant , Genetic Engineering , Pterins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL