Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Environ Pollut ; 324: 121420, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36906058

ABSTRACT

Petroleum hydrocarbons are significant new persistent organic pollutants for marine oil spill risk areas. Oil trading ports, in turn, have become major bearers of the risk of offshore oil pollution. However, studies on the molecular mechanisms of microbial degradation of petroleum pollutants by natural seawater are limited. Here, an in situ microcosm study was conducted. Combined with metagenomics, differences in metabolic pathways and in the gene abundances of total petroleum hydrocarbons (TPH) are revealed under different conditions. About 88% degradation of TPH was shown after 3 weeks of treatment. The positive responders to TPH were concentrated in the genera Cycloclasticus, Marivita and Sulfitobacter of the orders Rhodobacterales and Thiotrichales. The genera Marivita, Roseobacter, Lentibacter and Glaciecola were key degradation species when mixing dispersants with oil, and all of the above are from the Proteobacteria phylum. The analysis showed that the biodegradability of aromatic compounds, polycyclic aromatic hydrocarbon and dioxin were enhanced after the oil spill, and genes with higher abundances of bphAa, bsdC, nahB, doxE and mhpD were found, but the photosynthesis-related mechanism was inhibited. The dispersant treatment effectively stimulated the microbial degradation of TPH and then accelerated the succession of microbial communities. Meanwhile, functions such as bacterial chemotaxis and carbon metabolism (cheA, fadeJ and fadE) were better developed, but the degradation of persistent organic pollutants such as polycyclic aromatic hydrocarbons was weakened. Our study provides insights into the metabolic pathways and specific functional genes for oil degradation by marine microorganisms and will help improve the application and practice of bioremediation.


Subject(s)
Petroleum Pollution , Petroleum , Petroleum/metabolism , Persistent Organic Pollutants , Hydrocarbons/metabolism , Seawater/chemistry , Biodegradation, Environmental
2.
Ecotoxicol Environ Saf ; 253: 114700, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36863161

ABSTRACT

Naphthenic acids (NAs) are typical contaminants in heavily crude oil. Benzo[a]pyrene (B[a]P) is also a component of crude oil, but their combined effects have not been systematically explored. In this study, zebrafish (Danio rerio) were used as the test organisms, and behavioral indicators and enzyme activities were used as toxicity indicators. Combined with the effects of environmental concentrations, the toxic effects of low concentrations of commercially available NAs (0.5 mg/LNA) and benzo[a]pyrene (0.8 µg/LBaP) at single and compound exposures (0.5 mg/LNA and 0.8 µg/LBaP) were assayed in zebrafish, and transcriptome sequencing technology was used to explore the molecular mechanism of the two compounds affecting zebrafish from the molecular biology level. Sensitive molecular markers that could indicate the presence of contaminants were screened. The results showed that (1) zebrafish in the NA and BaP exposure groups exhibited increased locomotor behavior, and the mixed exposure group exhibited inhibition of locomotor behavior. Oxidative stress biomarkers showed increased activity under single exposure and decreased activity under the mixed exposure. (2) NA stress led to changes in the activity of transporters and the intensity of energy metabolism; BaP directly stimulates the pathway of actin production. When the two compounds are combined, the excitability of neurons in the central nervous system is decreased, and the actin-related genes are down-regulated. (3) After BaP and Mix treatments, genes were enriched in the cytokine-receptor interaction and actin signal pathway, while NA increased the toxic effect on the mixed treatment group. In general, the interaction between NA and BaP has a synergistic effect on the transcription of zebrafish nerve and motor behavior-related genes, resulting in increased toxicity under combined exposure. The changes in expression of various zebrafish genes are manifested in the changes in the normal movement behavior of zebrafish and the intensification of oxidative stress in the apparent behavior and physiological indicators. CAPSULE ABSTRACT: We investigated the toxicity and genetic alterations caused by NA, B[a]P, and their mixtures in zebrafish in an aquatic environment using transcriptome sequencing technology and comprehensive behavioral analysis. These changes involved energy metabolism, the generation of muscle cells, and the nervous system.


Subject(s)
Petroleum , Water Pollutants, Chemical , Animals , Transcriptome , Zebrafish/genetics , Benzo(a)pyrene/toxicity , Actins , Petroleum/toxicity , Water Pollutants, Chemical/toxicity
3.
Environ Pollut ; 307: 119496, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35594998

ABSTRACT

The changes in the composition and structure of microbial communities in Jiaozhou Bay are strongly affected by marine oil pollution, but the outcomes of the microbial responses and effects of dispersant application remain unclear. Herein, we performed an in situ microcosm study to investigate the response of the indigenous microbial community under crude oil alone and combined oil and dispersant treatment in the surface seawater of a semi-enclosed marine area of Jiaozhou Bay. The dynamics of the bacterial classification based on 16s rDNA sequencing were used to assess the changes with the crude oil concentration, dispersant use, and time. The crude oil resulted in a high abundance of the genera Pseudohongiella, Cycloclasticus, Marivita, and C1-B045 from the Gammaproteobacteria and Alphaproteobacteria classes, suggesting for hydrocarbon degradation. However, the dispersant treatment was more advantageous for Pacificibacter, Marivita, and Loktanella. Besides accelerating the rate of bacterial community succession, the dispersants had significantly stronger effects on the structure of the bacterial community and the degradation functions than the oil. A higher dose of oil exposure corresponded to fewer dominant species with a high relative abundance. Our study provides information for screening potential degradation bacteria and assessing the risks that oil spills pose to marine ecosystems.


Subject(s)
Gammaproteobacteria , Microbiota , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Bacteria , Bays , Biodegradation, Environmental , Gammaproteobacteria/metabolism , Petroleum/metabolism , Petroleum Pollution/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis
4.
Article in English | MEDLINE | ID: mdl-34721618

ABSTRACT

OBJECTIVE: Coronary artery disease (CAD) and associated comorbidities such as heart failure (HF) remain the leading cause of morbidity and mortality worldwide, attributed to, at least partially, the lack of biomarkers for efficient disease diagnosis. The study intended to explore potential biomarkers for predicting the presence of HF in CAD patients. METHODS: According to the presence of HF, 83 CAD patients with HF were assigned to the AHF group and 52 CAD patients without HF to the CAD group. Additionally, healthy controls (n = 52) were those who had received physical examinations at the same period. The serum levels of IL-13, TGF-ß1, and periostin were detected by the enzyme-linked immunosorbent assay (ELISA). Left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), left ventricle-end diastolic volume (LVEDV), and left ventricular mass index (LVMI) were detected 3 times by color Doppler ultrasound. The predictive values of IL-13, TGF-ß1, and periostin methods were compared by receiver-operating characteristic (ROC) analysis and the area under the curve (AUC). RESULTS: Increased levels of IL-13, TGF-ß1, and periostin were noted in the AHF group than in the control and CAD groups (p < 0.001); the CAD group showed higher levels of IL-13, TGF-ß1, and periostin than the control group (p < 0.001). Based on the NYHA classification, there were 33 cases with grade II, 28 cases with grade III, and 22 cases with grade IV among 83 CAD patients with HF. It was found that the serum levels of IL-13, TGF-ß1, and periostin were higher in the AHF-IV group than in the AHF-III and AHF-II groups (p < 0.001); these levels were also higher in the AHF-III group than in the AHF-II group (p < 0.001). The periostin level was positively correlated with the levels of IL-13 (r = 0.458) and TGF-ß1 (r = 0.569) in CAD patients with AHF. Besides, the serum levels of periostin (r = -0.425), IL-13 (r = -0.341), and TGF-ß1 (r = -0.435) were negatively correlated with the LVEF of CAD patients with AHF, respectively. When IL-13, TGF-ß1, and periostin levels were used to predict the presence of AHF in CAD patients in combination, the sensitivity and specificity were 75.9% and 90.38%, respectively, with the AUC of 0.906 (95% CI: 0.912-0.996). CONCLUSION: These data reveal that IL-13, TGF-ß1, and periostin levels might be associated with the occurrence of AHF in CAD patients and their combination shows the predictive value for the presence of AHF in CAD patients.

5.
Environ Pollut ; 240: 549-556, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29758529

ABSTRACT

Naphthenic acids (NAs) account for 1-2% of crude oil and represent its main acidic component. However, the aquatoxic effects of NAs on marine phytoplankton and their ecological risks have remained largely unknown. Using the marine microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis as the target, we studied the effects of NAs on their growth, cell morphology and physiological characteristics. The cell density decreased as the concentrations of NAs increased, indicating that they had an adverse effect on growth of the investigated algae in a concentration-dependent manner. Moreover, scanning electron microscopy revealed NAs exposure caused damage such as deformed cells, shrunken surface and ruptured cell structures. Exposure to NAs at higher concentrations for 48 h significantly increased the content of chlorophyll (Chl) a and b in P. tricornutum, but decreased their levels in P. helgolandica var. tsingtaoensis. NAs with concentrations no higher than 4 mg/L gradually enhanced the Chl fluorescence (ChlF) parameters and decreased the ChlF parameters at higher concentrations for the two marine microalgae. Additionally, NAs induced hormesis on photosynthetic efficiency of the two microalgae and also have the species difference in their aquatic toxicity. Overall, the results of this study provide a better understanding of the physiological responses of phytoplankton and will enable better risk assessments of NAs.


Subject(s)
Carboxylic Acids/toxicity , Chlorophyta/drug effects , Diatoms/drug effects , Microalgae/drug effects , Water Pollutants, Chemical/toxicity , Chlorophyll/analysis , Chlorophyll A , Diatoms/physiology , Petroleum/analysis , Petroleum/metabolism , Photosynthesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL