Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Clin Pathol ; 71(6): 498-503, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29138284

ABSTRACT

AIMS: Making a correct and rapid diagnosis is essential for managing pulmonary tuberculosis (PTB), particularly multidrug-resistant tuberculosis. We aimed to evaluate the efficacy of the combination of simultaneous amplification testing (SAT) and reverse dot blot (RDB) for the rapid detection of Mycobacterium tuberculosis (MTB) and drug-resistant mutants in respiratory samples. METHODS: 225 suspected PTB and 32 non-TB pulmonary disease samples were collected. All sputum samples were sent for acid-fast bacilli smear, SAT, culture and drug susceptibility testing (DST) by the BACTECTM MGITTM 960 system. 53 PTB samples were tested by both RDB and DNA sequencing to identify drug resistance genes and mutated sites. RESULTS: The SAT positive rate (64.9%) was higher than the culture positive rate (55.1%), with a coincidence rate of 83.7%. The sensitivity and specificity of SAT for diagnosing PTB were 66.7% and 100%, respectively, while those for culture were 53.9% and 84.2%, respectively. RDB has high sensitivity and specificity in identifying drug resistance genes and mutated sites. The results of RDB correlated well with those of DST and DNA sequencing, with coincidence rates of 92.5% and 98.1%, respectively. CONCLUSIONS: The combination of SAT and RDB is promising for rapidly detecting PTB and monitoring drug resistance in clinical laboratories.


Subject(s)
Antitubercular Agents/therapeutic use , DNA Mutational Analysis , Drug Resistance, Multiple, Bacterial/genetics , Electrophoresis , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Pulmonary/diagnosis , Genotype , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/drug effects , Predictive Value of Tests , Reproducibility of Results , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL