Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 2080, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747042

ABSTRACT

With increasing acreage of cash crops, the use of their by-products as supplements for livestock feed becomes an important factor. Marigold (Tagetes erecta L.) account for more than half of the world's loose flower production. However, there is no precedent for the abundantly available marigold crop residue (MCR) being used as feed in agricultural production, probably because of its strong pungent taste. This study aimed to evaluate the biotransformation of the volatile organic compounds (VOCs) of MCR by mixed ensilage and assess its palatability by cattle. Caryophyllene, the most prevalent VOC in MCR, decreased by 29.11% (P < 0.05), 38.85% (P < 0.05), 37.15% (P < 0.05), and 28.36% (P < 0.05) ensilage with corn meal (CM), bran (BR), crop corn (CC), and straw (ST), respectively. The acetic acid content increased by 686.05% (P < 0.05), 1337.21% (P < 0.05), 1244.19% (P < 0.05), and 1795.34% (P < 0.05) after mixed ensilage with CM, BR, CC, and ST, respectively. The total amount of alcoholic VOCs followed an overall increasing trend during mixed storage and 10 new alcohols were obtained. Over seven days, feed intake of mixed ensilage MCR by cattle differed significantly (P < 0.05) among treatments compared with MCR and was highest in MCRCM. Combined with palatability trials, the best MCR feed intake was achieved with MCRCM. The findings shed light on how feed odor can be improved and how degradation of terpenes can be enhanced in practical applications by mixed ensilage.


Subject(s)
Calendula , Tagetes , Volatile Organic Compounds , Animals , Cattle , Tagetes/chemistry , Volatile Organic Compounds/analysis , Flowers/chemistry , Zea mays , Dietary Supplements
2.
J Pharm Anal ; 11(5): 555-563, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34765268

ABSTRACT

Vine tea has been used as an herbal tea by several ethnic minorities for hundreds of years in China. Flavonoids, a kind of indispensable component in a variety of nutraceutical, pharmaceutical and cosmetic applications, are identified to be the major metabolites and bioactive ingredients in vine tea. Interestingly, vine tea exhibits a wide range of significant bioactivities including anti-oxidant, anti-inflammatory, anti-tumor, antidiabetic, neuroprotective and other activities, but no toxicity. These bioactivities, to some extent, enrich the understanding about the role of vine tea in disease prevention and therapy. The health benefits of vine tea, particularly dihydromyricetin and myricetin, are widely investigated. However, there is currently no comprehensive review available on vine tea. Therefore, this report summarizes the most recent studies investigating bioactive constituents, pharmacological effects and possible mechanisms of vine tea, which will provide a better understanding about the health benefits and preclinical assessment of novel application of vine tea.

3.
Article in Chinese | WPRIM | ID: wpr-908775

ABSTRACT

Vine tea has been used as an herbal tea by several ethnic minorities for hundreds of years in China.Flavonoids,a kind of indispensable component in a variety of nutraceutical,pharmaceutical and cosmetic applications,are identified to be the major metabolites and bioactive ingredients in vine tea.Interest-ingly,vine tea exhibits a wide range of significant bioactivities including anti-oxidant,anti-inflammatory,anti-tumor,antidiabetic,neuroprotective and other activities,but no toxicity.These bioactivities,to some extent,enrich the understanding about the role of vine tea in disease prevention and therapy.The health benefits of vine tea,particularly dihydromyricetin and myricetin,are widely investigated.However,there is currently no comprehensive review available on vine tea.Therefore,this report summarizes the most recent studies investigating bioactive constituents,pharmacological effects and possible mechanisms of vine tea,which will provide a better understanding about the health benefits and preclinical assessment of novel application of vine tea.

4.
J Basic Microbiol ; 59(9): 890-900, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31318074

ABSTRACT

Saccharopine dehydrogenase (EC 1.5.1.7) regulates the last step of fungal lysine biosynthesis. The gene (Fvsdh) encoding saccharopine dehydrogenase was identified and cloned from the whole genome of Flammulina velutipes. The genomic DNA of Fvsdh is 1257 bp, comprising three introns and four exons. The full-length complementary DNA of Fvsdh comprises 1107 bp with a deduced amino acid sequence of 368 residues. A 1,000-bp promoter sequence containing the TATA box, CAAT box, and several putative cis-acting elements was also identified. The results of tissue expression analysis showed that the expression level of the Fvsdh gene was higher in the pileus than in the stipe whether in the elongation or maturation stage. Further research showed that the lysine contents were 3.03 and 2.95 mg/g in maturation-pileus and elongation-pileus, respectively. In contrast, the lysine contents were 2.49 and 2.07 mg/g in elongation-stipe and maturation-stipe, respectively. To study the function of Fvsdh, we overexpressed Fvsdh in F. velutipes and found that Fvsdh gene expression was increased from 1.1- to 3-fold in randomly selected transgenic strains. The lysine contents were also increased from 1.12- to 1.3-fold in these five transformants, except for strain T3, in which the lysine contents were the same as the control. These results indicate that the expression of the Fvsdh gene can affect the lysine content of F. velutipes.


Subject(s)
Flammulina/genetics , Flammulina/metabolism , Fungal Proteins/genetics , Lysine/biosynthesis , Saccharopine Dehydrogenases/genetics , Base Sequence , Biosynthetic Pathways/genetics , Cloning, Molecular , Flammulina/classification , Flammulina/growth & development , Fungal Proteins/metabolism , Gene Expression , Gene Expression Regulation, Fungal , Phylogeny , Promoter Regions, Genetic , Saccharopine Dehydrogenases/metabolism
5.
J Appl Toxicol ; 39(3): 441-450, 2019 03.
Article in English | MEDLINE | ID: mdl-30325046

ABSTRACT

This study aimed to investigate the nephrotoxicity in rats administered with chronic low-dose cadmium (Cd) by ultra-performance liquid chromatography-mass spectrometry. A total of 40 male Sprague-Dawley rats were randomly assigned to four groups, namely: control; low-dose (0.13 mg/kg·body weight [bw]); middle-dose (0.80 mg/kg·bw); and high-dose (4.89 mg/kg·bw). The rats received CdCl2 daily via drinking water for 24 weeks. Rat kidneys were collected for metabonomics analysis. Principal components analysis and partial least-squares discriminant analysis were used to investigate the metabonomics profile changes in the kidney samples and to screen the potential biomarkers. Ten metabolites were identified in the positive and negative ion modes. Compared with the control group, the intensities of tetranor 12-HETE, uric acid, hypoxanthine, phenylacetylglycine, guanidinosuccinic acid and xanthosine significantly increased (P < 0.01), and those of imidazolelactic acid, lactose 6-phosphate, l-urobilinogen and arachidonic acid significantly decreased (P < 0.01) in the high-dose group. Results showed that exposure to Cd in rats induced oxidative stress to the kidneys and disrupted amino acid metabolism, fatty acid metabolism and energy metabolism.


Subject(s)
Cadmium/toxicity , Kidney/drug effects , Metabolomics , Animals , Cadmium/metabolism , Chromatography, High Pressure Liquid/methods , Kidney/metabolism , Kidney/pathology , Male , Mass Spectrometry/methods , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
6.
J Agric Food Chem ; 65(27): 5570-5580, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28627167

ABSTRACT

The main polyphenols in mung bean (Vigna radiata L.) seed (MBS), an edible legume with various biological activities, are C-glycosyl flavones (vitexin, isovitexin, isovitexin-6″-O-α-l-glucoside, and dulcinoside). In our study, a validated ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to quantitate the concentrations of four C-glycosyl flavones from MBS extracts in the plasma and various tissues of rats and successfully applied to study their pharmacological profile and tissue distribution in vivo. Four C-glycosyl flavones were rapidly absorbed after oral administration, achieving a Cmax at around 1.5 h, and they could be distributed widely and rapidly in tested tissues. The concentrations of four C-glycosyl flavones in all of the tested tissues decreased obviously in 4 h, which indicated that there was not a trend of long-term accumulation of them. This is the first time to report on pharmacokinetic and tissue distribution studies of four C-glycosyl flavones in rat. The results provided a significative basis for the application of MBS.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fabaceae/chemistry , Flavones/pharmacokinetics , Plant Extracts/pharmacokinetics , Seeds/chemistry , Tandem Mass Spectrometry/methods , Animals , Biological Availability , Flavones/blood , Male , Plant Extracts/blood , Rats , Rats, Sprague-Dawley , Seeds/metabolism , Tissue Distribution
7.
J Sep Sci ; 39(14): 2728-35, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27233468

ABSTRACT

A sensitive and selective ultra high performance liquid chromatography with tandem mass spectrometry method was established and validated for the simultaneous determination of hydroxy-α-sanshool, hydroxy-ß-sanshool, and hydroxy-γ-sanshool in rat plasma after the subcutaneous and intravenous administration of an extract of the pericarp of Zanthoxylum bungeanum Maxim. Piperine was used as the internal standard. The analytes were extracted from rat plasma by liquid-liquid extraction with ethyl acetate and separated on a Thermo Hypersil GOLD C18 column (2.1 mm × 50 mm, 1.9 µm) with a gradient elution system at a flow rate of 0.4 mL/min. The mobile phase consisted of acetonitrile/0.05% formic acid in water and the total analysis time was 4 min. Positive electrospray ionization was performed using multiple reaction monitoring mode for the analytes. The calibration curves of the three analytes were linear over the tested concentration range. The intra- and interday precision was no more than 13.6%. Extraction recovery, matrix effect, and stability were satisfactory in rat plasma. The developed and validated method was suitable for the quantification of hydroxy-α-sanshool, hydroxy-ß-sanshool, and hydroxy-γ-sanshool and successfully applied to a pharmacokinetic study of these analytes after subcutaneous and intravenous administration to rats.


Subject(s)
Amides/pharmacokinetics , Anesthetics/pharmacokinetics , Zanthoxylum/chemistry , Amides/analysis , Anesthetics/analysis , Chromatography, High Pressure Liquid , Liquid-Liquid Extraction , Molecular Structure , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL