Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Asian J Pharm Sci ; 17(3): 412-424, 2022 May.
Article in English | MEDLINE | ID: mdl-35782326

ABSTRACT

Pure drug-assembled nanosystem provides a facile and promising solution for simple manufacturing of nanodrugs, whereas a lack of understanding of the underlying assembly mechanism and the inefficient and uncontrollable drug release still limits the development and application of this technology. Here, a simple and practical nanoassembly of DOX and DiR is constructed on basis of their co-assembly characteristics. Multiple interaction forces are found to drive the co-assembly process. Moreover, DOX release from the nanoassembly can be well controlled by the acidic tumor microenvironment and laser irradiation, resulting in favorable delivery efficiency of DiR and DOX in vitro and in vivo. As expected, the nanoassembly with high therapeutic safety completely eradicated the mice triple negative breast cancer cells (4T1) on BALB/c mice, owing to synergistic chemo-photothermal therapy. More interestingly, DiR and DOX synergistically induce immunogenic cell death (ICD) of tumor cells after treatment, enabling the mice to acquire immune memory against tumor growth and recurrence. Such a facile nanoassembly technique provides a novel multimodal cancer treatment platform of chemotherapy/phototherapy/immunotherapy.

2.
Bioact Mater ; 6(8): 2291-2302, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33553816

ABSTRACT

Phototherapy has been intensively investigated as a non-invasive cancer treatment option. However, its clinical translation is still impeded by unsatisfactory therapeutic efficacy and severe phototoxicity. To achieve high therapeutic efficiency and high security, a nanoassembly of Forster Resonance Energy Transfer (FRET) photosensitizer pairs is developed on basis of dual-mode photosensitizer co-loading and photocaging strategy. For proof-of-concept, an erythrocyte-camouflaged FRET pair co-assembly of chlorine e6 (Ce6, FRET donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR, FRET acceptor) is investigated for breast cancer treatment. Notably, Ce6 in the nanoassemby is quenched by DiR and could be unlocked for photodynamic therapy (PDT) only when DiR is photobleached by 808-nm laser. As a result, Ce6-caused phototoxicity could be well controlled. Under cascaded laser irradiation (808-660 nm), tumor-localizing temperature rise following laser irradiation on DiR not only induces tumor cell apoptosis but also facilitates the tumor penetration of NPs, relieves tumor hypoxia, and promotes the PDT efficacy of Ce6. Such FRET pair-based nanoassembly provides a new strategy for developing multimodal phototherapy nanomedicines with high efficiency and good security.

SELECTION OF CITATIONS
SEARCH DETAIL