Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Oxid Med Cell Longev ; 2019: 4363672, 2019.
Article in English | MEDLINE | ID: mdl-31281575

ABSTRACT

The present study was conducted to investigate the effect and potential mechanism of hypoxia-inducible factor-1α (HIF-1α) genetic inhibition plus glutamine (Gln) supplementation on necrosis-apoptosis imbalance during acute pancreatitis (AP), with a specific focus on the regulations of intracellular energy metabolism status. Wistar rats and AR42J cells were used to establish AP models. When indicated, a HIF-1α knockdown with or without a Gln supplementation was administered. In vivo, local and systemic inflammatory injuries were assessed by serum cytokine measurement, H&E staining, and transmission electron microscope (TEM) observation of pancreatic tissue. In vitro, intracellular energy metabolism status was evaluated by measuring the intracellular adenosine triphosphate (ATP), lactic acid, and Ca2+ concentrations and the mitochondrial potential. In addition, changes in the apoptotic activity were analyzed using TUNEL staining in vivo and an apoptosis assay in vitro. HIF-1α knockdown alleviated AP-related inflammatory injury as indicated by the measurements of serum cytokines and examinations of TEM and H&E staining of pancreatic tissues. HIF-1α knockdown played an antioxidative role against AP-related injuries by preventing the increase in the intracellular Ca2+ concentration and the decrease in the mitochondrial membrane potential and subsequently by suppressing the glycolysis pathway and increasing energy anabolism in AR42J cells after AP induction. Apoptosis was significantly upregulated when HIF-1α was knocked down before AP induction due to an attenuation of the translocation of nuclear factor-kappa B to the nuclei. Furthermore, these merits of HIF-1α knockdown in the relief of the metabolic stress and upregulation of apoptosis were more significant when Gln was administered concomitantly. In conclusion, Gln-supplemented HIF-1α knockdown might be promising for the future management of AP by relieving the intracellular energy stress, thereby attenuating the predominance of necrosis over apoptosis.


Subject(s)
Glutamine/administration & dosage , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pancreatitis/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Gene Knockdown Techniques , Glutamine/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Necrosis , Pancreatitis/genetics , Pancreatitis/pathology , Rats , Rats, Wistar
2.
Article in English | MEDLINE | ID: mdl-29785192

ABSTRACT

To investigate the therapeutic effects of PN on intestinal inflammation and microvascular injury and its mechanisms, dextran sodium sulfate- (DSS-) or iodoacetamide- (IA-) induced rat colitis models were used. After colitis model was established, PN was orally administered for 7 days at daily dosage of 1.0 g/kg. Obvious colonic inflammation and mucosal injuries and microvessels were observed in DSS- and IA-induced colitis groups. DAI scores, serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6, and TNF-α, and expression of Rap1GAP and TSP1 proteins in the colon were significantly higher while serum concentrations of IL-4 and IL-10 and MVD in colon were significantly lower in the colitis model groups than in the normal control group. PN promoted repair of colonic mucosal injury and microvessels, attenuated inflammation, and decreased DAI scores in rats with colitis. PN also decreased the serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6, and TNF-α and increased the serum concentrations of IL-4 and IL-10, with the expression of Rap1GAP and TSP1 proteins in colonic mucosa being downregulated. The constituents of PN were identified with HPLC-DAD. To sum up, PN could promote repair of injuries of colonic mucosa and microvessels via downregulating VEGFA isoforms and inhibiting Rap1GAP/TSP1 signaling pathway.

3.
World J Gastroenterol ; 23(47): 8308-8320, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29307991

ABSTRACT

AIM: To investigate the effects of Panax notoginseng (PN) on microvascular injury in colitis, its mechanisms, initial administration time and dosage. METHODS: Dextran sodium sulfate (DSS)- or iodoacetamide (IA)-induced rat colitis models were used to evaluate and investigate the effects of ethanol extract of PN on microvascular injuries and their related mechanisms. PN administration was initiated at 3 and 7 d after the model was established at doses of 0.5, 1.0 and 2.0 g/kg for 7 d. The severity of colitis was evaluated by disease activity index (DAI). The pathological lesions were observed under a microscope. Microvessel density (MVD) was evaluated by immunohistochemistry. Vascular permeability was evaluated using the Evans blue method. The serum concentrations of cytokines, including vascular endothelial growth factor (VEGF)A121, VEGFA165, interleukin (IL)-4, IL-6, IL-10 and tumor necrosis factor (TNF)-α, were detected by enzyme-linked immunosorbent assay. Myeloperoxidase (MPO) and superoxide dismutase (SOD) were measured to evaluate the level of oxidative stress. Expression of hypoxia-inducible factor (HIF)-1α protein was detected by western blotting. RESULTS: Obvious colonic inflammation and injuries of mucosa and microvessels were observed in DSS- and IA-induced colitis groups. DAI scores, serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon were significantly higher while serum concentrations of IL-4 and IL-10 and MVD in colon were significantly lower in the colitis model groups than in the normal control group. PN promoted repair of injuries of colonic mucosa and microvessels, attenuated inflammation, and decreased DAI scores in rats with colitis. PN also decreased the serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon, and increased the serum concentrations of IL-4 and IL-10 as well as the concentration of SOD in the colon. The efficacy of PN was dosage dependent. In addition, DAI scores in the group administered PN on day 3 were significantly lower than in the group administered PN on day 7. CONCLUSION: PN repairs vascular injury in experimental colitis via attenuating inflammation and oxidative stress in the colonic mucosa. Efficacy is related to initial administration time and dose.


Subject(s)
Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/therapeutic use , Microvessels/drug effects , Panax notoginseng/chemistry , Animals , Colitis, Ulcerative/blood , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colon/blood supply , Cytokines/blood , Dextran Sulfate/toxicity , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/pharmacology , Humans , Intestinal Mucosa/blood supply , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Microvessels/pathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Time Factors , Treatment Outcome , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL