Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Animals (Basel) ; 14(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612234

ABSTRACT

Sperm cryopreservation is a valuable tool for breeding, conservation, and genetic improvement in aquatic resources, while oxidative damage will cause a decline in sperm quality during this progress. Melatonin (MT), a natural antioxidant hormone, is used as an additive in sperm cryopreservation to reduce cellular damage from oxidative stress. Here, we aimed to investigate the effect of adding MT to the freezing medium in sperm cryopreservation of brown-marbled grouper (Epinephelus fuscoguttatus). Different concentrations of MT (0, 0.1, 0.25, and 0.5 mg/mL) were tested. We evaluated sperm motility, viability, apoptosis, mitochondrial membrane potential (MMP), and fertilization ability to assess the effects of MT supplementation. Our results demonstrated that the addition of MT to the extender improved the post-thaw motility, MMP, and fertilization ability of brown-marbled grouper sperm. The total motility, curvilinear velocity, straight linear velocity, and average path velocity in MT-treated groups (0.1 and 0.25 mg/mL) exhibited significantly higher values than that of the control group. A higher MMP (p < 0.05) was observed in the group treated with 0.25 mg/mL MT, suggesting that supplementation of MT in the extender might be able to protect mitochondrial membrane integrity effectively. Regarding fertilizing ability, 0.25 mg/mL MT yielded a significantly higher hatching rate than the control. An adverse effect was found with the concentration of MT up to 0.5 mg/mL, suggesting the possible toxicity of a high-dose addition. In this study, we optimized the sperm cryopreservation protocol of brown-marbled grouper, which might be valuable for sperm cryopreservation and sample commercialization of groupers and other fish.

2.
Food Microbiol ; 120: 104449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431336

ABSTRACT

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Subject(s)
Burkholderia gladioli , Oryza , Bongkrekic Acid/analysis , Soybean Oil/analysis , Starch , Food Contamination/analysis , Flour/analysis
3.
Molecules ; 29(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542867

ABSTRACT

Jieyu Pills (JYPs), a Chinese medicine consisting of 10 herbal elements, have displayed promising clinical effectiveness and low by-effects in the treatment of depression. Prior investigations mostly focused on elucidating the mechanism and therapeutic efficacy of JYPs. In our earlier study, we provided an analysis of the chemical composition, serum pharmacochemistry, and concentrations of the main bioactive chemicals found in JYPs. However, our precise understanding of the pharmacokinetics and metabolism remained vague. This study involved a comprehensive and meticulous examination of the pharmacokinetics of 13 bioactive compounds in JYPs. Using UPLC-Orbitrap Fusion MS, we analyzed the metabolic characteristics and established the pharmacokinetic parameters in both control rats and model rats with attention deficit hyperactivity disorder (ADHD) following oral administration of the drug. Before analysis, plasma samples that were collected at different time intervals after the administration underwent methanol pre-treatment with Puerarin used as the internal standard (IS) solution. Subsequently, the sample was chromatographed on a C18 column employing gradient elution. The mobile phase consisted of methanol solution containing 0.1% formic acid in water. The electrospray ionization source (ESI) was utilized for ionization, whereas the scanning mode employed was selected ion monitoring (SIM). The UPLC-Orbitrap Fusion MS method was subjected to a comprehensive validation process to assess its performance. The method demonstrated excellent linearity (r ≥ 0.9944), precise measurements (RSD < 8.78%), accurate results (RE: -7.88% to 8.98%), and appropriate extraction recoveries (87.83-102.23%). Additionally, the method exhibited minimal matrix effects (87.58-101.08%) and satisfactory stability (RSD: 1.52-12.42%). These results demonstrated adherence to the criteria for evaluating and determining biological material. The 13 bioactive compounds exhibited unique pharmacokinetic patterns in vivo. In control rats, all bioactive compounds except Ferulic acid exhibited linear pharmacokinetics within the dose ranges. In the ADHD model, the absorption rate and amount of most of the components were both observed to have increased. Essentially, this work is an important reference for examining the metabolism of JYPs and providing guidelines for clinical therapy.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Attention Deficit Disorder with Hyperactivity/drug therapy , Tandem Mass Spectrometry/methods , Methanol , Drugs, Chinese Herbal/analysis , Reproducibility of Results
4.
Nutrients ; 16(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474778

ABSTRACT

Globally, the high consumption levels of sugar-sweetened beverages (SSBs) and their effect on health have drawn significant attention. This study aimed to identify the consumption patterns of SSBs among children in rural areas of Guangzhou, China, and explore their association with undernutrition. A total of 1864 children aged 9-17 years old were included in this study. Demographics, lifestyle behaviors, and anthropometric and dietary information were collected. Factor analysis was used to identify patterns of SSBs, while nutritional status was assessed using Body Mass Index (BMI). Latent class analysis was used to establish dietary preference models. Log-binomial regression analysis was used to analyze the association between SSBs consumption patterns and undernutrition. The undernutrition prevalence in children was 14.54-19.94% in boys and 9.07% in girls. Three SSB consumption patterns were identified, including the plant protein pattern, dairy-containing pattern, and coffee pattern. Both medium-high (Q3) and the highest (Q4) scores in the dairy-containing pattern were positively associated with the risk of undernutrition, especially in boys. Furthermore, the highest scores in the plant protein pattern and coffee pattern were positively associated with the risk of undernutrition in children aged 9-10 years old. The dairy-containing pattern was a risk factor for undernutrition in children, especially for boys; the plant protein patterns and coffee patterns were risk factors for undernutrition in children aged 9-10 years old. The findings of the study can provide scientific evidence and policy recommendations for improving children's health conditions.


Subject(s)
Malnutrition , Sugar-Sweetened Beverages , Male , Child , Female , Humans , Adolescent , Sugar-Sweetened Beverages/analysis , Beverages/analysis , Cross-Sectional Studies , Coffee , Plant Proteins
5.
Plant Physiol Biochem ; 208: 108457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428159

ABSTRACT

Rice is an important food in the world, and selenium (Se) is a necessary trace element for the human. So the effects of selenomethionine (SeMet) on photosynthetic capacity, yield and quality of rice at different stages were studied. The results show that SeMet can increase the Ppotosynthetic capacity of rice leaves during each growth stage, the effect of 5 mg/L SeMet treatment was the most significant. At the mature stage of rice, SeMet significantly increased rice yield and total plant biomass, 7.5and 5 mg/L SeMet treatments had the most significant effects, respectively. In addition, SeMet significantly improved the content of Se and processing quality of rice, decreased chalkiness, inhibited amylose synthesis, and optimized flavor. The above indices showed the best results after treatment with 5 mg/L SeMet. It is hoped that this study will provide a theoretical basis for the application of organic selenium in rice production.


Subject(s)
Oryza , Selenium , Humans , Selenomethionine/pharmacology , Selenium/pharmacology
6.
Environ Int ; 185: 108488, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359550

ABSTRACT

Inorganic trivalent arsenic (iAsⅢ) at environmentally relevant levels has been found to cause developmental toxicity. Maternal exposure to iAsⅢ leads to enduring hepatic lipid deposition in later adult life. However, the exact mechanism in iAsⅢ induced hepatic developmental hazards is still unclear. In this study, we initially found that gestational exposure to iAsⅢ at an environmentally relevant concentration disturbs lipid metabolism and reduces levels of alpha-ketoglutaric acid (α-KG), an important mitochondrial metabolite during the citric acid cycle, in fetal livers. Further, gestational supplementation of α-KG alleviated hepatic lipid deposition caused by early-life exposure to iAsⅢ. This beneficial effect was particularly pronounced in female offspring. α-KG partially restored the ß-oxidation process in hepatic tissues by hydroxymethylation modifications of carnitine palmitoyltransferase 1a (Cpt1a) gene during fetal development. Insufficient ß-oxidation capacities probably play a crucial role in hepatic lipid deposition in adulthood following in utero arsenite exposure, which can be efficiently counterbalanced by replenishing α-KG. These results suggest that gestational administration of α-KG can ameliorate hepatic lipid deposition caused by iAsⅢ in female adult offspring partially through epigenetic reprogramming of the ß-oxidation pathway. Furthermore, α-KG shows potential as an interventive target to mitigate the harmful effects of arsenic-induced hepatic developmental toxicity.


Subject(s)
Arsenic Poisoning , Arsenic , Arsenicals , Humans , Adult , Female , Arsenic/toxicity , Arsenic/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Arsenicals/metabolism , Arsenic Poisoning/metabolism , Liver , Dietary Supplements , Epigenesis, Genetic , Lipids
7.
Front Cell Infect Microbiol ; 14: 1341032, 2024.
Article in English | MEDLINE | ID: mdl-38415012

ABSTRACT

Objective: This study is aim to discern the Traditional Chinese Medicine (TCM) syndrome classifications relevant to immunotherapy sensitive in non-small cell lung cancer (NSCLC) patients, and to delineate intestinal microbiota biomarkers and impact that wield influence over the efficacy of NSCLC immunotherapy, grounded in the TCM theory of "lung and large intestine stand in exterior-interior relationship." Methods: The study cohort consisted of patients with advanced NSCLC who received treatment at the Oncology Department of Chengdu Fifth People's Hospital. These patients were categorized into distinct TCM syndrome types and subsequently administered immune checkpoint inhibitors (ICIs), specifically PD-1 inhibitors. Stool specimens were collected from patients both prior to and following treatment. To scrutinize the differences in microbial gene sequences and species of the intestinal microbiota, 16S rRNA amplicon sequencing technology was employed. Additionally, peripheral blood samples were collected, and the analysis encompassed the assessment of T lymphocyte subsets and myeloid suppressor cell subsets via flow cytometry. Subsequently, alterations in the immune microenvironment pre- and post-treatment were thoroughly analyzed. Results: The predominant clinical manifestations of advanced NSCLC patients encompassed spleen-lung Qi deficiency syndrome and Qi-Yin deficiency syndrome. Notably, the latter exhibited enhanced responsiveness to ICIs with a discernible amelioration of the immune microenvironment. Following ICIs treatment, significant variations in microbial abundance were identified among the three strains: Clostridia, Lachnospiraceae, and Lachnospirales, with a mutual dependency relationship. In the subset of patients manifesting positive PD-L1 expression and enduring therapeutic benefits, the study recorded marked increases in the ratios of CD3+%, CD4+%, and CD4+/CD8+ within the T lymphocyte subsets. Conversely, reductions were observed in the ratios of CD8%, Treg/CD4+, M-MDSC/MDSC, and G-MDSC/MDSC. Conclusion: The strains Clostridia, Lachnospiraceae, and Lachnospirales emerge as potential biomarkers denoting the composition of the intestinal microbiota in the NSCLC therapy. The immunotherapy efficacy of ICIs markedly accentuates in patients displaying durable treatment benefits and those expressing positive PD-L1.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , B7-H1 Antigen , RNA, Ribosomal, 16S/genetics , Immunotherapy , Programmed Cell Death 1 Receptor , Lung , Tumor Microenvironment
8.
Prim Care Diabetes ; 18(1): 97-103, 2024 02.
Article in English | MEDLINE | ID: mdl-37993324

ABSTRACT

BACKGROUND: As meta-inflammation is a common feature for obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease and atherosclerosis, we have proposed a new concept, metabolic inflammatory syndrome (MIS), to cluster such diseases. We aimed to characterize MIS and explore its association with coronary heart disease (CHD) among T2D inpatients in China. METHODS: A total number of 8344 T2D participants were enrolled. Each component of MIS and metabolic syndrome (MS) was analyzed. Their association with the risk of CHD was assessed using a binary logistic analysis. RESULTS: Among the T2D inpatients, the detection rate of MIS was much higher than that of MS (93.6 % vs. 53.2 %). Among all the components of MIS and MS, carotid atherosclerosis (71.9 %) was most commonly detected, which increased with aging in subgroups. Surprisingly, the most common combination of MIS was with all 4 components in T2D patients, with a constituent ratio of 30.9 %. According to the odds ratios (ORs), MIS was a better predictor of CHD than MS, especially after adjustment for age, sex, smoking, and alcohol consumption (adjusted OR for MIS: 3.083; for MS: 1.515). The presence of more components of MIS was associated with a higher detection rate of CHD (P < 0.001). Among all the components of MIS and MS, carotid atherosclerosis best predicted the risk of CHD (adjusted OR: 1.787). CONCLUSIONS: MIS is an independent risk factor for CHD, with a bigger OR value than MS. Carotid atherosclerosis, with the highest detection rate, was the best individual predictor of CHD and thus a critical component of MIS. The concept of MIS represents the understanding of metabolic diseases from the perspective of holistic integrative medicine.


Subject(s)
Carotid Artery Diseases , Coronary Disease , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , Inpatients , Risk Factors , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology , China/epidemiology
9.
Plant Sci ; 339: 111948, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097046

ABSTRACT

Although long non-coding RNAs have been recognized to play important roles in plant, their possible functions and potential mechanism in Ginkgo biloba flavonoid biosynthesis are poorly understood. Flavonoids are important secondary metabolites and healthy components of Ginkgo biloba. They have been widely used in food, medicine, and natural health products. Most previous studies have focused on the molecular mechanisms of structural genes and transcription factors that regulate flavonoid biosynthesis. Few reports have examined the biological functions of flavonoid biosynthesis by long non-coding RNAs in G. biloba. Long noncoding RNAs associated with flavonoid biosynthesis in G. biloba have been identified through RNA sequencing, but the function of lncRNAs has not been reported. In this study, the expression levels of lnc10 and lnc11 were identified. Quantitative real-time polymerase chain reaction analysis revealed that lnc10 and lnc11 were expressed in all detected organs, and they showed significantly higher levels in immature and mature leaves than in other organs. In addition, to fully identify the function of lnc10 and lnc11 in flavonoid biosynthesis in G. biloba, lnc10 and lnc11 were cloned from G. biloba, and were transformed into Arabidopsis and overexpressed. Compared with the wild type, the flavonoid content was increased in transgenic plants. Moreover, the RNA-sequencing analysis of wild-type, lnc10-overexpression, and lnc11-overexpression plants screened out 2019 and 2552 differentially expressed genes, and the transcript levels of structural genes and transcription factors associated with flavonoid biosynthesis were higher in transgenic Arabidopsis than in the wild type, indicating that lnc10 and lnc11 activated flavonoid biosynthesis in the transgenic lines. Overall, these results suggest that lnc10 and lnc11 positively regulate flavonoid biosynthesis in G. biloba.


Subject(s)
Arabidopsis , RNA, Long Noncoding , Ginkgo biloba/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/analysis , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Extracts/metabolism , Flavonoids , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/metabolism
10.
Eur J Med Chem ; 265: 116070, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38134747

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly. Contemporary treatments can only relieve symptoms but fail to delay disease progression. Curcumin is a naturally derived compound that has demonstrated significant therapeutic effects in AD treatment. Recently, molecular hybridization has been utilized to combine the pharmacophoric groups present in curcumin with those of other AD drugs, resulting in a series of novel compounds that enhance the therapeutic efficacy through multiple mechanisms. In this review, we firstly provide a concise summary of various pathogenetic hypotheses of AD and the mechanism of action of curcumin in AD, as well as the concept of molecular hybridization. Subsequently, we focus on the recent development of hybrid molecules derived from curcumin, summarizing their structures and pharmacological activities, including cholinesterase inhibitory activity, Aß aggregation inhibitory activity, antioxidant activity, and other activities. The structure-activity relationships were further discussed.


Subject(s)
Alzheimer Disease , Curcumin , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/drug therapy , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/chemistry , Neurodegenerative Diseases/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Structure-Activity Relationship , Amyloid beta-Peptides
11.
Planta ; 259(1): 2, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971670

ABSTRACT

KEY MESSAGE: This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.


Subject(s)
Plants , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/genetics , Plants/metabolism , Terpenes/metabolism , Plant Extracts/metabolism , Gene Expression Regulation, Plant
12.
ACS Nano ; 17(21): 21394-21410, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37870500

ABSTRACT

Immunotherapy is an effective adjunct to surgery for preventing tumor recurrence and metastasis in postoperative tumor patients. Although mimicking microbial invasion and immune activation pathways can effectively stimulate the immune system, the limited capacity of microbial components to bind antigens and adjuvants restricts the development of this system. Here, we construct bionic yeast carriers (BYCs) by in situ polymerization of mesoporous silica nanoparticles (MSNs) within the yeast capsules (YCs). BYCs can mimic the yeast infection pathway while utilizing the loading capacity of MSNs for multiple substances. Pore size and hydrophobicity-modified BYC can be loaded with both antigen and adjuvant R848. Oral or subcutaneous injection uptake of coloaded BYCs demonstrated positive therapeutic effects as a tumor therapeutic vaccine in both the transplantation tumor model and the metastasis tumor model. 57% of initial 400 mm3 tumor recurrence models are completely cured with coloaded BYCs via combination therapy with surgery, utilizing surgically resected tumors as antigens. The BYCs construction and coloading strategy will provide insights and optimistic approaches for the development of effective and controllable cancer vaccine carriers.


Subject(s)
Cancer Vaccines , Nanoparticles , Humans , Saccharomyces cerevisiae , Bionics , Neoplasm Recurrence, Local/prevention & control , Adjuvants, Immunologic , Antigens , Silicon Dioxide , Porosity , Drug Carriers
13.
Sci Total Environ ; 905: 167346, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37769736

ABSTRACT

BACKGROUND: Economic and social development worldwide increases the input of nutrients, especially nitrogen (N) and phosphorus (P), to soils. These nutrients affect soil respiration (Rs) in terrestrial ecosystems. They may act independently or have interactive effects on Rs. The effect of N and P on Rs and its components (autotrophic respiration [Ra] and heterotrophic respiration [Rh]), however, either individually or together, is poorly understood. We performed a meta-analysis of 130 studies to examine the effects of different fertilization treatments on Rs and its components across terrestrial ecosystems. RESULTS: Our results showed that (1) The impact of fertilizer addition on Rs varies among different fertilizer types. N addition reduced Rs and Rh significantly but did not affect Ra; P addition had no significant effect on Rs, Rh, and Ra; NP addition increased Rs significantly but did not affect Rh and Ra. (2) Ecosystem type, duration of fertilization, fertilization rate, and fertilizer form influenced the response of Rs and its components to fertilizer application. (3) Based on our study, the annual average temperature may be a driving factor of Rs response to fertilizer addition, while soil total nitrogen may be an important predictor of Rs response to fertilizer addition. CONCLUSION: Overall, our study highlights the complex and multifaceted nature of the response of soil Rs and its components to fertilizer application, underscoring the importance of considering multiple factors when predicting and modeling future Rs and its feedback to global change.


Subject(s)
Ecosystem , Soil , Nitrogen , Phosphorus , Fertilizers , Respiration
14.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764268

ABSTRACT

Jinshui-Huanxian granules (JHGs), a Chinese herbal compound prescription, have shown a therapeutic effect in reducing lung tissue damage, improving the degree of pulmonary fibrosis, replenishing lungs and kidneys, relieving cough and asthma, reducing phlegm, and activating blood circulation. However, these active compounds' pharmacokinetics and metabolic processes were unclear. This study aimed to compare the pharmacokinetics, reveal the metabolic dynamic changes, and obtain the basic pharmacokinetic parameters of 16 main bioactive compounds after intragastric administration of JHGs in control and pulmonary fibrosis (PF) model rats by using Orbitrap Fusion MS. After administration of JHGs, the rat plasma was collected at different times. Pretreating the plasma sample with methanol and internal standard (IS) solution carbamazepine (CBZ), and it was then applied to a C18 column by setting gradient elution with a mobile phase consisting of methanol 0.1% formic acid aqueous solution. Detection was performed on an electrospray ionization source (ESI), and the scanning mode was SIM. Pharmacokinetic parameters were analyzed according to the different analytes' concentrations in plasma. The matrix effect was within the range of 79.01-110.90%, the extraction recovery rate was 80.37-102.72%, the intra-day and inter-day precision relative standard deviation (RSD) was less than 7.76%, and the stability was good, which met the requirements of biological sample testing. The method was validated (r ≥ 0.9955) and applied to compare the pharmacokinetic profiles of the control group and PF model group after intragastric administration of the JHGs. The 16 analytes exhibited different pharmacokinetic behaviors in vivo. In the pathological state of the PF model, most of the components were more favorable for metabolism and absorption, and it was more meaningful to study the pharmacokinetics. Above all, this study provided an essential reference for exploring the mechanism of action of JHGs and guided clinical medication as well.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Fibrosis , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/analysis , Pulmonary Fibrosis/drug therapy , Methanol , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
15.
Colloids Surf B Biointerfaces ; 229: 113475, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536169

ABSTRACT

Alopecia is a treatable benign disease, however, approximately 15-30% of women and 50% of men suffer from alopecia, which greatly affects patient's self-esteem and quality of life. Currently, commercial products for alopecia treatment include topical minoxidil solution, oral finasteride tablets and oral baricitinib tablets. However, the barrier of stratum corneum, systemic adverse effects and poor cure rate limit the application of commercial products. Therefore, researchers investigated the mechanism of alopecia, and developed new drugs that could target lactate dehydrogenase-related pathways, remove excessive reactive oxygen in hair follicles, and reduce the escape of hair follicle stem cells, thus injecting new strength into the treatment of alopecia. Moreover, starting from improving drug stratum corneum penetration and reducing side effects, researchers have developed hair loss treatment strategies based on dissolved microneedles (MNs), such as drug powders/microparticles, nanoparticles, biomimetic cell membranes, phototherapy and magnetically responsive soluble microneedles, which show exciting alopecia treatment effects. However, there are still some challenges in the practical application of the current alopecia treatment strategy with soluble microneedles, and further studies are needed to accelerate its clinical translation.


Subject(s)
Alopecia , Quality of Life , Male , Humans , Female , Alopecia/drug therapy , Alopecia/chemically induced , Minoxidil/adverse effects , Finasteride/adverse effects , Hair Follicle , Treatment Outcome
16.
Am J Chin Med ; 51(6): 1431-1457, 2023.
Article in English | MEDLINE | ID: mdl-37530505

ABSTRACT

Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. C57BL/6 mice were given injections of liposaccharide (LPS) to establish the in vivo model. Meanwhile, BMDM cells were stimulated with LPS+ATP to build the in vitro model. CA significantly alleviated inflammation and oxidative stress in both the in vivo and in vitro models of ALI through the inhibition of NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis. In addition, CA attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis in the in vivo and in vitro models of ALI by suppressing the production of reactive oxygen species (ROS) via inhibiting the Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. CA inhibited the interaction between Akt at T308 and phosphoinositide-dependent kinase-1 (PDPK1) at S549, thus promoting the phosphorylation of the Akt protein. Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt , Pyroptosis , 1-Phosphatidylinositol 4-Kinase , Lipopolysaccharides/adverse effects , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Inflammation/drug therapy
17.
Planta ; 258(1): 13, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37300575

ABSTRACT

MAIN CONCLUSION: This study provides an overview of the structure, classification, regulatory mechanisms, and biological functions of the basic (region) leucine zipper transcription factors and their molecular mechanisms in flavonoid, terpenoid, alkaloid, phenolic acid, and lignin biosynthesis. Basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors (TFs) in eukaryotic organisms. The bZIP TFs are widely distributed in plants and play important roles in plant growth and development, photomorphogenesis, signal transduction, resistance to pathogenic microbes, biotic and abiotic stress, and secondary metabolism. Moreover, the expression of bZIP TFs not only promotes or inhibits the accumulation of secondary metabolites in medicinal plants, but also affects the stress response of plants to the external adverse environment. This paper describes the structure, classification, biological function, and regulatory mechanisms of bZIP TFs. In addition, the molecular mechanism of bZIP TFs regulating the biosynthesis of flavonoids, terpenoids, alkaloids, phenolic acids, and lignin are also elaborated. This review provides a summary for in-depth study of the molecular mechanism of bZIP TFs regulating the synthesis pathway of secondary metabolites and plant molecular breeding, which is of significance for the generation of beneficial secondary metabolites and the improvement of plant varieties.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Lignin , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Secondary Metabolism/genetics , Lignin/metabolism , Plants/genetics , Plants/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Phylogeny
18.
J Agric Food Chem ; 71(22): 8589-8601, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37233984

ABSTRACT

This study aimed to construct a natural peptide-based emulsion gel (PG) using small peptides (∼2.2 kDa) by mild enzymatic hydrolysis of buckwheat proteins. The obtained PG presented a porous and tight texture and solid-gel viscoelasticity compared with its parent protein-based emulsion gel. Meanwhile, it exhibited good resistance against heating and freeze-thawing. Furthermore, peptide-oil interaction analysis revealed that the gel matrix was enhanced by the hydrophobic aggregation between peptides and oil molecules, H-bonding interaction of peptide molecules, and peptide-oil aggregate repulsion force. Finally, in vitro intestinal digestion experiments demonstrated that PG could embed and pH-responsively release curcumin in the gastrointestinal tract at a release rate of 53.9%. The findings unfold promising opportunities for using natural PG in a range of applications relying on large proteins or other synthesized molecules.


Subject(s)
Fagopyrum , Gels/chemistry , Emulsions/chemistry , Curcumin/chemistry , Fagopyrum/chemistry , Peptides/chemistry , Plant Proteins/chemistry , Viscosity , Elasticity , Temperature
19.
Int J Med Mushrooms ; 25(1): 65-76, 2023.
Article in English | MEDLINE | ID: mdl-36734920

ABSTRACT

As a wood-degrading Agaricomycetes mushroom, Ganoderma lucidum can be cultivated on broad-leaf hardwoods. Generally, producers care about the yield, but not the quality of G. lucidum cultivated by different tree species. In this study, five broad-leaf hardwood tree species-Quercus variabilis Bl. (Qv), Castanea mollissima Bl. (Cm), Liquidambar formosana Hance (Lf), Dalbergia hupeana Hance (Dh), and Platycarya strobilacea Sieb. et Zucc. (Ps)-were selected for cultivating of G. lucidum. The chemical compositions of G. lucidum fruiting bodies produced by these tree species were determined by Fourier transform infrared and two-dimensional infrared correlation spectroscopy in order to select the most suitable tree species for cultivation. The overall spectra showed less discrimination of each peak variation detected and properly kept most of the primary metabolites. The second derivative unfolded the stagnation of the first spectrum and more base peaks were detected especially in the range of the first two sections. The protein content contained in G. lucidum cultivated on Ps was 92%, like that on Dh. On the other hand, only 27% similarity was determined in G. lucidum cultivated on Ps and Qv. Therefore, the correlation of this range for the protein content can help in tree species selection. The active sequence of 2DIR spectral could be determined by the active bonding of the component reacted to the perturbation. The result could provide a scientific basis for the selection of tree species and the comprehensive utilization of broad-leaf tree resources on G. lucidum cultivation.


Subject(s)
Agaricales , Reishi , Reishi/chemistry , Trees , Fourier Analysis , Spectrophotometry, Infrared
20.
Clin Exp Nephrol ; 27(2): 122-131, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36326941

ABSTRACT

PURPOSE: The nephrotoxicity caused by cisplatin severely limits the application and affects related platinum-based therapeutics. Neferine is a dibenzylisoquinoline alkaloid extracted from a Chinese medicinal herb (Nelumbo nucifera Gaertn), which can decrease cisplatin-induced apoptosis of NRK-52E cells by activating autophagy in vitro in our previous study. In this article, we aimed to further investigate the protective effect of neferine, against to the cispltain-induced kidney damage in mice. METHODS: Six groups were designed in our study. Renal index, mice serum creatinine and blood urea nitrogen levels were detected after the mice were killed. HE staining was used to observe the pathological changes of each group. The apoptosis of mouse kidney tissue was detected by TUNEL. Immunofluorescence and Western blot were used to detect the expression of cleaved-caspase3 and LC3. The transmission electron microscope was used to reveal the changes of apoptosis and autophagy of renal tubular epithelial cells in different groups. RESULTS: In our findings, the pathological changes of acute kidney injury were easily observed in cisplatin-treated mice while those in the neferine-pretreated groups were significantly alleviated. The apoptosis induced by cisplatin in mice increased evidently compared with the control group, which was decreased in the mice with neferine pretreatment. What' more, we found that autophagy increased obviously in mice pretreated by neferine contrast to the cisplatin-treated mice. CONCLUSION: In our study, neferine can effectively alleviate cisplatin-induced renal injury in mice, as well act as an autophagy-regulator in kidney protection.


Subject(s)
Acute Kidney Injury , Apoptosis , Autophagy , Cisplatin , Animals , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cisplatin/adverse effects , Cisplatin/toxicity , Kidney/pathology , Drugs, Chinese Herbal/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL