Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Transplant ; 24(7): 1132-1145, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38452932

ABSTRACT

Mycophenolate mofetil (MMF) is one of the most used immunosuppressive drugs in organ transplantation, but frequent gastrointestinal (GI) side effects through unknown mechanisms limit its clinical use. Gut microbiota and its metabolites were recently reported to play a vital role in MMF-induced GI toxicity, but the specific mechanism of how they interact with the human body is still unclear. Here, we found that secondary bile acids (BAs), as bacterial metabolites, were significantly reduced by MMF administration in the gut of mice. Microbiome data and fecal microbiota transfer model supported a microbiota-dependent effect on the reduction of secondary BAs. Supplementation of the secondary BA lithocholic acid alleviated MMF-induced weight loss, colonic inflammation, and oxidative phosphorylation damage. Genetic deletion of the vitamin D3 receptor (VDR), which serves as a primary colonic BA receptor, in colonic epithelial cells (VDRΔIEC) abolished the therapeutic effect of lithocholic acid on MMF-induced GI toxicity. Impressively, we discovered that paricalcitol, a Food and Drug Administration-approved VDR agonist that has been used in clinics for years, could effectively alleviate MMF-induced GI toxicity. Our study reveals a previously unrecognized mechanism of gut microbiota, BAs, and VDR signaling in MMF-induced GI side effects, offering potential therapeutic strategies for clinics.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Mycophenolic Acid , Receptors, Calcitriol , Animals , Mycophenolic Acid/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Receptors, Calcitriol/metabolism , Bile Acids and Salts/metabolism , Immunosuppressive Agents , Mice, Inbred C57BL , Male , Gastrointestinal Diseases/chemically induced , Lithocholic Acid , Humans
2.
Am J Transplant ; 20(9): 2413-2424, 2020 09.
Article in English | MEDLINE | ID: mdl-32243709

ABSTRACT

Approximately 33.6% of nondiabetic solid organ transplant recipients who received tacrolimus developed hyperglycemia. Whether the tacrolimus-induced gut microbiota is involved in the regulation of hyperglycemia has not been reported. Hyperglycemia was observed in a tacrolimus-treated mouse model, with reduction in taxonomic abundance of butyrate-producing bacteria and decreased butyric acid concentration in the cecum. This tacrolimus-induced glucose metabolic disorder was caused by the gut microbiota, as confirmed by a broad-spectrum antibiotic model. Furthermore, oral supplementation with butyrate, whether for remedy or prevention, significantly increased the butyric acid content in the cecum and arrested hyperglycemia through the regulation of glucose-regulating hormones, including glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and insulin, in serum. The butyrate-G-protein-coupled receptor 43-GLP-1 pathway in the intestinal crypts may be involved in the pathogenesis of normalization of hyperglycemia caused by the tacrolimus. Therefore, tacrolimus affects glucose metabolism through the butyrate-associated GLP-1 pathway in the gut, and oral supplementation with butyrate provides new insights for the prevention and treatment of tacrolimus-induced hyperglycemia in transplant recipients.


Subject(s)
Gastrointestinal Microbiome , Hyperglycemia , Animals , Butyric Acid , Glucagon-Like Peptide 1 , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Mice , Tacrolimus/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL