Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Genomics ; 19(Suppl 1): 41, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29363419

ABSTRACT

BACKGROUND: Recent results demonstrated that either non-coding or coding genes generate phased secondary small interfering RNAs (phasiRNAs) guided by specific miRNAs. Till now, there is no studies for phasiRNAs in Panax notoginseng (Burk.) F.H. Chen (P. notoginseng), an important traditional Chinese herbal medicinal plant species. METHODS: Here we performed a genome-wide discovery of phasiRNAs and its host PHAS loci in P. notoginseng by analyzing small RNA sequencing profiles. Degradome sequencing profile was used to identify the trigger miRNAs of these phasiRNAs and potential targets of phasiRNAs. We also used RLM 5'-RACE to validate some of the identified phasiRNA targets. RESULTS: After analyzing 24 small RNA sequencing profiles of P. notoginseng, 204 and 90 PHAS loci that encoded 21 and 24 nucleotide (nt) phasiRNAs, respectively, were identified. Furthermore, we found that phasiRNAs produced from some pentatricopeptide repeat-contain (PPR) genes target another layer of PPR genes as validated by both the degradome sequencing profile and RLM 5'-RACE analysis. We also found that miR171 with 21 nt triggers the generations of 21 nt phasiRNAs from its conserved targets. CONCLUSIONS: We validated that some phasiRNAs generated from PPRs and TASL genes are functional by targeting other PPRs in trans. These results provide the first set of PHAS loci and phasiRNAs in P. notoginseng, and enhance our understanding of PHAS in plants.


Subject(s)
Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Panax notoginseng/genetics , Plant Proteins/genetics , RNA, Small Interfering/genetics , Sequence Analysis, RNA/methods , Gene Expression Regulation, Plant , RNA, Small Interfering/classification
2.
Sci Rep ; 7(1): 9418, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842680

ABSTRACT

Plant genomes encode several classes of small regulatory RNAs (sRNAs) that play critical roles in both development and stress responses. Panax notoginseng (Burk.) F.H. Chen (P. notoginseng) is an important traditional Chinese herbal medicinal plant species for its haemostatic effects. Therefore, the root yield of P. notoginseng is a major economically important trait since the roots of P. notoginseng are the parts used to produce medicine. To identify sRNAs that are critical for the root biomass of P. notoginseng, we performed a comprehensive study of miRNA transcriptomes from P. notoginseng roots of different biomasses. We identified 675 conserved miRNAs, of which 180 pre-miRNAs are also identified, and three TAS3 loci in P. notoginseng. By using degradome sequencing, we identified 79 conserved miRNA:target or tasiRNA:target interactions, of which eight were further confirmed with the RLM 5'-RACE experiments. More importantly, our results revealed that a member of miR156 family and one of its SPL target genes have inverse expression levels, which is tightly correlated with greater root biomass contents. These results not only contributes to overall understanding of post-transcriptional gene regulation in roots of P. notoginseng but also could serve as markers for breeding P. notoginseng with greater root yield.


Subject(s)
Biomass , MicroRNAs/genetics , Panax notoginseng/genetics , Plant Roots/genetics , RNA, Small Untranslated/genetics , Conserved Sequence , Evolution, Molecular , MicroRNAs/chemistry , Nucleic Acid Conformation , RNA, Small Untranslated/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL