Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Microbiol ; 13: 970501, 2022.
Article in English | MEDLINE | ID: mdl-36110293

ABSTRACT

African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes severe socio-economic consequences in affected countries. Unfortunately, effective vaccine for combating ASF is unavailable so far, and the prevention and control strategies for ASFV are still very limited. Toosendanin (TSN), a triterpenoid saponin extracted from the medicinal herb Melia toosendan Sieb. Et Zucc, has been demonstrated to possess analgesic, anti-inflammatory, anti-botulism and anti-microbial activities, and was used clinically as an anthelmintic, while the antiviral effect of TSN on ASFV has not been reported. In this study, we revealed that TSN exhibited a potent inhibitory effect on ASFV GZ201801-38 strain in porcine alveolar macrophages (PAMs; EC50 = 0.085 µM, SI = 365) in a dose-dependent manner. TSN showed robust antiviral activity in different doses of ASFV infection and reduced the transcription and translation levels of ASFV p30 protein, viral genomic DNA quantity as well as viral titer at 24 and 48 h post-infection. In addition, TSN did not affect virion attachment and release but intervened in its internalization in PAMs. Further investigations disclosed that TSN played its antiviral role by upregulating the host IFN-stimulated gene (ISG) IRF1 rather than by directly inactivating the virus particles. Overall, our results suggest that TSN is an effective antiviral agent against ASFV replication in vitro and may have the potential for clinical use.

2.
Biomed Res Int ; 2020: 2524314, 2020.
Article in English | MEDLINE | ID: mdl-33294434

ABSTRACT

H9N2 subtype avian influenza virus (H9N2 AIV) is a low pathogenic virus that is widely prevalent all over the world. H9N2 AIV causes immunosuppression in the host and often leads to high rates of mortality due to secondary infection with Escherichia. Due to the drug resistance of bacteria, many antibiotics are not effective in the treatment of secondary bacterial infection. Therefore, the purpose of this study is to find effective nonantibiotic drugs for the treatment of H9N2 AIV infection-induced secondary bacterial infection and inflammation. This study proves, for the first time, that baicalin, a Chinese herbal medicine, can regulate Lactobacillus to replace Escherichia induced by H9N2 AIV, so as to resolve the intestinal flora disorder. In addition, baicalin can effectively prevent intestinal bacterial translocation of SPF chickens' post-H9N2 AIV infection, thus inhibiting secondary bacterial infection. Furthermore, baicalin can effectively treat H9N2 AIV-induced inflammation by inhibiting intestinal structural damage, inhibiting damage to ileal mucus layer construction and tight junctions, improving antioxidant capacity, affecting blood biochemical indexes, and inhibiting the production of inflammatory cytokines. Taken together, these results provide a new theoretical basis for clinical prevention and control of H9N2 AIV infection-induced secondary bacterial infection and inflammation.


Subject(s)
Bacterial Infections/drug therapy , Chickens/microbiology , Chickens/virology , Coinfection/microbiology , Flavonoids/therapeutic use , Inflammation/virology , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/virology , Animals , Antioxidants/metabolism , Bacterial Infections/complications , Bacterial Translocation/drug effects , Coinfection/complications , Coinfection/drug therapy , Coinfection/virology , Cytokines/genetics , Cytokines/metabolism , Flavonoids/pharmacology , Gastrointestinal Microbiome , Gene Expression Regulation/drug effects , Health Status , Inflammation/complications , Inflammation/pathology , Mucus/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Specific Pathogen-Free Organisms , Tight Junctions/metabolism
3.
Front Microbiol ; 11: 555739, 2020.
Article in English | MEDLINE | ID: mdl-33193136

ABSTRACT

H9N2 avian influenza virus (AIV) infection in chickens is often accompanied by secondary bacterial infection, but the mechanism is unclear. The aim of the present study was to reveal that mechanism and explore non-antibiotic treatment. 16s rRNA sequencing and metabonomics were performed in the intestinal contents of chickens infected with H9N2 AIV or H9N2 AIV and fed with ageratum-liquid (AL) to reveal the metabolite that promote intestinal Escherichia coli (E. coli) proliferation caused by H9N2 AIV, as well as to determine the regulatory effect of AL. It was found that H9N2 AIV infection led E. coli to become the dominant gut microbe and promoted E. coli translocation from the intestinal tract to the visceral tissue through the damaged intestinal barrier. H9N2 AIV infection induces inflammation in the intestinal mucosa and promotes the secretion and release of nitrate from the host intestinal epithelium. In addition, nitrate promoted E. coli proliferation in the inflamed intestinal tract following H9N2 AIV infection. Furthermore, Chinese herbal medicine AL can restore intestinal homeostasis, inhibit the production of nitrate in the intestinal epithelium and effectively prevent the proliferation and translocation of E. coli in the intestines. This is the first report on the mechanism of E. coli secondary infection induced by H9N2 AIV, where herbal medicine AL was shown to have a good preventive effect on the secondary infection.

4.
Poult Sci ; 99(12): 6481-6492, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248563

ABSTRACT

To study the effects of antibacterial peptides (ABPs) on feeding broilers, this experiment compared the 2 combinations of ABP with antibiotics by separately adding the supplement to the diet of 818 broilers as follows-antibiotics, Pratt and Full-tide, and Pratt and plant essential oil-and then the effect of them on production performance, immune function, antioxidant capacity, serum biochemical indicators, and microorganisms of the experimental flocks was investigated and compared. It was found that the aforementioned indicators among the 2 groups of ABP and the antibiotic group were close to or even better than those of antibiotics, and the combination added with plant essential oils had generally better effects. These results indicated that ABPs could improve economic benefits by promoting growth, preventing disease, and reducing the rate of death. This study deepened the research on the action mechanism of ABPs and not only explored the feasibility of ABPs as a novel feed additive for broilers but also provided experimental data and theoretical basis for the application of ABPs.


Subject(s)
Antimicrobial Cationic Peptides , Chickens , Dietary Supplements , Growth , Immunity , Intestines , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Chickens/growth & development , Chickens/immunology , Diet/veterinary , Growth/drug effects , Immunity/drug effects , Intestines/drug effects
5.
Poult Sci ; 99(12): 6606-6618, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248576

ABSTRACT

The goal of the study was testing the effects of chlorogenic acid (CA) supplementation on small intestine healthiness, growth performance, oxidative stress, inflammatory response, and blood biochemical indices in specific-pathogen-free (SPF) chickens after infection with Clostridium perfringens (CP) type A. In this study, 324 1-day-old male SPF chickens were randomly distributed into 6 groups: control group; CA group; CP infection group; CA + CP group; antibiotic group; antibiotic + CP group. All 1-day-old chickens were fed with CA or antibiotic in corresponding treatment group for 13 d. On the 14 d, the chickens in corresponding infection group were challenged with CP type A for 3 d. Samples in each group were collected when the chickens were 17 and 21 d old. This study proves for the first time that CA, a Chinese herbal medicine, can effectively improve growth performance, inhibit small intestine structural damage, improve antioxidant capacity, inhibit damage to ileal mucosal layer construction and tight junctions, inhibit inflammatory cytokines, and ameliorate blood biochemical indices. Therefore, this study provides data for CA being able to effectively alleviate small intestine damage caused by CP type A infection in chickens.


Subject(s)
Chlorogenic Acid , Clostridium Infections , Inflammation , Intestine, Small , Oxidative Stress , Poultry Diseases , Animals , Chickens , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Clostridium Infections/drug therapy , Clostridium Infections/veterinary , Clostridium perfringens , Diet/veterinary , Dietary Supplements , Inflammation/drug therapy , Inflammation/veterinary , Intestine, Small/drug effects , Male , Oxidative Stress/drug effects , Poultry Diseases/drug therapy , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL