Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34691215

ABSTRACT

Osthole has been isolated from the fruits of Cnidium monnieri (L.) Cusson, which has been used in Chinese traditional medicine to treat pruritic disorders for a long time. However, the antipruritic mechanism of osthole is not fully understood. In the present study, using calcium imaging, molecular docking, and animal scratching behavior, we analyzed the pharmacological effects of osthole on transient receptor potential vanilloid 1 (TRPV1). The results showed that osthole significantly induced calcium influx in a dose-dependent manner in dorsal root ganglion (DRG) neurons. Osthole-induced calcium influx was inhibited by AMG9810, an antagonist of TRPV1. Osthole and the TRPV1 agonist capsaicin-induced calcium influx were desensitized by pretreatment with osthole. Furthermore, molecular docking results showed that osthole could bind to TRPV1 with a hydrogen bond by anchoring to the amino acid residue ARG557 in the binding pocket of TRPV1. In addition, TRPV1 is a downstream ion channel for the histamine H1 and H4 receptors to transmit itch signals. Osthole attenuated scratching behavior induced by histamine, HTMT (histamine H1 receptor agonist), and VUF8430 (histamine H4 receptor agonist) in mice. These results suggest that osthole inhibition of histamine-dependent itch may be due to the activation and subsequent desensitization of TRPV1 in DRG neurons.

2.
Article in English | MEDLINE | ID: mdl-32454868

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin disease characterized by intense pruritus and skin lesions. The exact cause of AD is not yet known and the available therapeutic strategies for AD are limited. Fructus cnidii is commonly used in traditional Chinese medicine as an herb for treating chronic itch. However, the mechanism underlying the antipruritic effects of Fructus cnidii is not well understood. In the present study, we investigated the antipruritic effect of locally administered ethyl acetate extract from Fructus cnidii (EAEFC) to 2,4-dinitrofluorobenzene- (DNFB-) induced AD in a mouse model. The scratching behavior, skin thickness, dermatitis score, weight, blood immunoglobulin E (IgE) level, and itch-related cytokine levels were subsequently monitored and evaluated. Results showed that EAEFC treatment attenuated the DNFB-induced AD-like symptoms by alleviating the skin lesions and decreasing the dermatitis score. Hematoxylin and eosin (H&E) and toluidine blue (TB) staining analyses demonstrated that EAEFC mitigated the DNFB-induced increase in skin thickness and prevented the infiltration of mast cells. Behavioral tests showed that EAEFC decreased the DNFB-induced acute and chronic scratching behaviors. Furthermore, EAEFC reduced the levels of itch-related cytokines, such as thymic stromal lymphopoietin (TSLP), interleukin- (IL-) 17, IL-33, and IL-31, and the DNFB-induced boost in serum IgE. Collectively, these results suggest that EAEFC is a potential therapeutic candidate for the treatment of chronic itch in AD.

3.
Nanoscale Res Lett ; 14(1): 79, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30838476

ABSTRACT

Up to date, the way in which metal nanoparticles are cleared in vivo has yet to be elucidated well. Herein, we report a novel intestinal goblet cell-mediated in vivo clearance pathway to remove metal nanoparticles. Typical metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters were selected as representative examples. These metal nanoparticles were prepared, characterized, and injected via tail vein into a mice model with common bile duct (CBD) ligation. The feces and urines were collected for 7 days to be followed by the sacrifice of the mice and collection of the intestinal and gastric tissues for further analysis. The results showed that all four selected metal nanoparticles were located inside the goblet cells (GCs) of the whole intestinal tissue and were excreted into the gut lumen through the secretion of intestinal GC. Moreover, triangular silver nanoplates and gold nanorods were located inside the gastric parietal cells (PCs). Importantly, nanoparticles did not cause obvious pathological changes in intestinal tissues. In this study, we confirmed that the blood corpuscles are involved in the GCs secretion pathway. Furthermore, we found that the secretion of nanoparticles from intestinal GCs and PCs is accelerated by diarrhea induced via Chinese herbs. In conclusion, metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters can be cleaned away by intestinal GCs and PCs. This novel pathway of in vivo clearance of metal nanoparticles has a great potential for future applications such as new drug design and development, nanoparticle-based labeling and in vivo tracking, and biosafety evaluation of in vivo nanoparticles.

4.
Wei Sheng Yan Jiu ; 37(6): 651-3, 2008 Nov.
Article in Chinese | MEDLINE | ID: mdl-19238994

ABSTRACT

OBJECTIVE: To investigate the effects of hepatotoxicity and nephrotoxicity on rats induced by Nano-SiO2 Nano-Fe3O4 and SWCNTs. METHODS: 42 Wistar rats were randomly divided into the control group, low and high dose groups of three kinds of nanoparticles. The rats were killed when rats were exposed by oral gavage for 4 weeks. The ratios of liver and kidney to body weight, the pathological changes of liver and kidney, serum certain biochemically indexes were detected. RESULTS: The ratios of liver and kidney to body weight in experimental groups were not significantly difference in comparison to the control. The ALT and AST level in serum of rats in part experiment groups were more higher than those of the control group. The results of pathological analysis indicated that there were small amounts inflammatory cell infiltration and hepatic cell adipose degeneration in the liver of rats in high-dose group, the change of kidney were not found. CONCLUSION: Three kinds of nanoparticles could induce hepatotoxicity of the rats in the condition of this experiment.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Kidney Diseases/chemically induced , Metal Nanoparticles/toxicity , Animals , Chemical and Drug Induced Liver Injury/pathology , Ferrosoferric Oxide/toxicity , Male , Nanotubes, Carbon/toxicity , Random Allocation , Rats , Rats, Wistar , Silicon Dioxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL