Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Med Oncol ; 39(4): 48, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35103856

ABSTRACT

Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.


Subject(s)
Breast Neoplasms/genetics , Carrier Proteins/genetics , Glia Maturation Factor/metabolism , Ubiquitin-Protein Ligases/genetics , YY1 Transcription Factor/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation/genetics , Female , Humans , RNA, Messenger/genetics
2.
Small Methods ; 5(2): e2000920, 2021 02.
Article in English | MEDLINE | ID: mdl-34927892

ABSTRACT

The size and structural control of particulate carriers for imaging agents and therapeutics are constant themes in designing smart delivery systems. This is motivated by the causal relationship between geometric parameters and functionalities of delivery vehicles. Here, both in vitro and in vivo, the controlling factors for cytotoxicity, photothermal, and anti-tumor effects of biodegradable magnesium@poly(lactic-co-glycolic acid (Mg@PLGA) particulate carriers with different sizes and shell thicknesses are investigated. Mg@PLGA microspheres fabricated by microfluidic emulsification are shown to have higher Mg encapsulation efficiency, 87%, than nanospheres by ultrasonic homogenization, 50%. The photothermal and anti-tumor effects of Mg@PLGA spheres are found to be dictated by their Mg content, irrelevant to size and structural features, as demonstrated in both in vitro cell assays and in vivo mice models. These results also provide important implications for designing and fabricating stimuli-responsive drug delivery vehicles.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/therapy , Magnesium/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , HeLa Cells , Humans , Magnesium/chemistry , Magnesium/pharmacology , Mice , Microfluidic Analytical Techniques , Microspheres , Nanoparticles , Particle Size , Phototherapy , Xenograft Model Antitumor Assays
3.
J Nanobiotechnology ; 19(1): 137, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985525

ABSTRACT

Photothermal therapy has attracted extensive attentions in cancer treatment due to its precise spatial-temporal controllability, minimal invasiveness, and negligible side effects. However, two major deficiencies, unsatisfactory heat conversion efficiency and limited tissue penetration depth, hugely impeded its clinical application. In this work, hollow carbon nanosphere modified with polyethylene glycol-graft-polyethylenimine (HPP) was elaborately synthesized. The synthesized HPP owns outstanding physical properties as a photothermal agent, such as uniform core-shell structure, good biocompatibility and excellent heat conversion efficiency. Upon NIR-II laser irradiation, the intracellular HPP shows excellent photothermal activity towards cancer cell killing. In addition, depending on the large internal cavity of HPP, the extended biomedical application as drug carrier was also demonstrated. In general, the synthesized HPP holds a great potential in NIR-II laser-activated cancer photothermal therapy.


Subject(s)
Biocompatible Materials , Carbon/chemistry , Nanospheres/chemistry , Phototherapy/methods , Photothermal Therapy , Animals , Drug Carriers/chemistry , Humans , Neoplasms/therapy , Polyethylene Glycols
4.
Oncotarget ; 12(4): 366-378, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33659047

ABSTRACT

The effects and mechanisms of folic acid (FA) as a chemopreventive agent for tumorigenesis of hepatocellular carcinoma (HCC) remain unclear. In this study, the QSG-7701, a human normal liver cell line, was cultured in different FA levels (High, Normal or No) for 6 months. Then, the biological characteristics, the expression of main stem cell-like genes or epithelial-mesenchymal transition (EMT) related genes and the tumorigenicity in vivo of cells cultured in different treatment groups were detected. Our results showed that No FA improved the malignant transformation of cells but High FA depressed the malignant transformation. Meanwhile, cells in different treatment groups were mapped by transcriptome sequencing. Then the relativity of increased LCN2 and decreased FA level was identified and confirmed in vitro and vivo. We also revealed that intracellular control of LCN2 would recover the effects of FA on cell proliferation, cell cycle and tumor formation in vitro and vivo. Finally, our studies displayed that increased FA level induced the down-regulation of LCN2 not by DNA hypermethylation of LCN2 promoter but by promoting the level of histone H3 lysine 9 di-methylation (H3K9Me2) in LCN2 promoter. In conclusion, our studies disclosed the chemopreventive effect of FA supplementation on hepatocarcinogenesis, which partial attributed to the inhibition of LCN2 by regulating histone methylation in promoter. Our results provide a potential mechanism of the chemoprevention of FA supplementation on tumorigenesis of HCC and may be helpful in developing treatment target against HCC.

SELECTION OF CITATIONS
SEARCH DETAIL