Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646751

ABSTRACT

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Subject(s)
Caragana , Carbon , Forests , Nitrogen , Organic Chemicals , Phosphorus , Soil , China , Soil/chemistry , Carbon/analysis , Caragana/growth & development , Nitrogen/analysis , Phosphorus/analysis , Organic Chemicals/analysis , Nutrients/analysis , Environmental Restoration and Remediation/methods , Carbon Sequestration , Ecosystem
2.
Fitoterapia ; 175: 105960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621426

ABSTRACT

Five undescribed eremophilane-type sesquiterpenes, remophilanetriols E-I (1-5), along with seven known compounds (6-12) were isolated from the fresh roots of Rehmannia glutinosa. Their structures were characterized by extensive spectroscopic data analysis and their absolute configurations were determined by comparing their calculated electronic circular dichroism (ECD) spectra and experimental ECD spectra. The anti-pulmonary fibrosis activities of all compounds were evaluated in vitro by MTT methods, and compounds 2, 8, 10, and 12 exhibited excellent anti-pulmonary fibrosis activities. In addition, compound 2 can reduce the levels of ROS and apoptosis in TGF-ß1-induced BEAS-2B cells.


Subject(s)
Phytochemicals , Plant Roots , Rehmannia , Plant Roots/chemistry , Molecular Structure , Rehmannia/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/chemistry , Apoptosis/drug effects , Cell Line , Reactive Oxygen Species/metabolism , China , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/isolation & purification , Polycyclic Sesquiterpenes/chemistry
3.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4046-4059, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802772

ABSTRACT

The present study aimed to investigate the protective effect and underlying mechanism of Platycladi Semen oil(SP) on Aß_(25-35)-induced brain injury in mice to provide a theoretical basis for the clinical treatment of Alzheimer's disease(AD). Male Kunming(KM) mice were randomly divided into a control group, a model group(brain injection of Aß_(25-35), 200 µmol·L~(-1), 0.15 µL·g~(-1)), a positive drug group(donepezil, 10 mg·kg~(-1)), and low-and high-dose SP groups(0.5 and 1 mL·kg~(-1)). Learning and memory ability, neuronal damage, levels of Aß_(1-42)/Aß_(1-40), p-Tau, related indicators of apoptosis and oxidative stress, and immune cells, and protein and mRNA expression related to the sphingosine kinase 1(SPHK1)/sphingosine-1-phosphate(S1P)/sphingosine-1-phosphate receptor 5(S1PR5) signaling pathway of mice in each group were determined. In addition, compounds in SP were analyzed by gas chromatography-mass spectrometry(GC-MS). The mechanism of SP against AD was investigated by network pharmacology, 16S rDNA gene sequencing for gut microbiota(GM), and molecular docking techniques. The results showed that SP could improve the learning and memory function of Aß_(25-35)-induced mice, reduce hippocampal neuronal damage, decrease the levels of Aß_(1-42)/Aß_(1-40), p-Tau, and indicators related to apoptosis and oxidative stress in the brain, and maintain the homeostasis of immune cells and GM. Network pharmacology and sequencing analysis for GM showed that the therapeutic effect of SP on AD was associated with the sphingolipid signaling pathway. Meanwhile,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid, the components with the highest content in SP, showed good binding activity to SPHK1 and S1PR5. Therefore, it is inferred that SP exerts anti-apoptosis and antioxidant effects by regulating GM and inhibiting SPHK1/S1P/S1PR5 pathway, thereby improving brain injury induced by Aß_(25-35) in mice. Moreover,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid may be the material basis for the anti-AD effect of SP.


Subject(s)
Alzheimer Disease , Brain Injuries , Gastrointestinal Microbiome , Mice , Animals , Male , Semen/metabolism , Network Pharmacology , Linoleic Acid , Molecular Docking Simulation , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2637-2650, 2023 10.
Article in English | MEDLINE | ID: mdl-37097336

ABSTRACT

This study is to observe the upregulation effect of astragaloside IV on ghrelin in diabetic cognitive impairment (DCI) rats and to investigate the pathway in prevention and treatment by reducing oxidative stress. The DCI model was induced with streptozotocin (STZ) in conjunction with a high-fat and high-sugar diet and divided into three groups: model, low-dose (40 mg/kg), and high-dose (80 mg/kg) astragaloside IV. After 30 days of gavage, the learning and memory abilities of rats, as well as their body weight and blood glucose levels, were tested using the Morris water maze and then detection of insulin resistance, SOD activity, and serum MDA levels. The whole brain of rats was sampled for hematoxylin-eosin and Nissl staining to observe pathological changes in the hippocampal CA1 region. Immunohistochemistry was used to detect ghrelin expression in the hippocampal CA1 region. A Western blot was used to determine changes in GHS-R1α/AMPK/PGC-1α/UCP2. RT-qPCR was used to determine the levels of ghrelin mRNA. Astragaloside IV reduced nerve damage, increased superoxide dismutase (SOD) activity, decreased MDA levels, and improved insulin resistance. Ghrelin levels and expression increased in serum and hippocampal tissues, and ghrelin mRNA levels increased in rat stomach tissues. According to Western blot, it increased the expression of the ghrelin receptor GHS-R1α and upregulated the mitochondrial function associated-protein AMPK-PGC-1α-UCP2. Astragaloside IV increases ghrelin expression in the brain to reduce oxidative stress and delay diabetes-induced cognitive impairment. It may be related to the promotion of ghrelin mRNA levels.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Insulin Resistance , Rats , Animals , Up-Regulation , AMP-Activated Protein Kinases , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Ghrelin/pharmacology , Oxidative Stress , Cognitive Dysfunction/drug therapy , Superoxide Dismutase-1
5.
Phytomedicine ; 101: 154120, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35523117

ABSTRACT

BACKGROUND: Postmenopausal women have a high incidence of atherosclerosis. Phytosterols have been shown to have cholesterol-lowering properties. Alisa B 23-acetate (AB23A) is a biologically active plant sterol isolated from Chinese herbal medicine Alisma. However, the atherosclerosis effect of AB23A after menopause and its possible mechanism have not been reported yet. PURPOSE: To explore whether AB23A can prevent atherosclerosis by regulating farnesoid X receptor and subsequently increasing fecal bile acid and cholesterol excretion to reduce plasma cholesterol levels. METHODS: Aortic samples from premenopausal and postmenopausal women with ascending aortic arteriosclerosis were analyzed, and bilateral ovariectomized (OVX) female LDLR-/- mice and free fatty acid (FFA)-treated L02 cells were used to analyze the effect of AB23A supplementation therapy. RESULTS: AB23A increased fecal cholesterol and bile acids (BAs) excretion dependent on activation of hepatic farnesoid X receptor (FXR) in ovariectomized mice. AB23A inhibited hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) via inducing small heterodimer partner (SHP) expression. On the other hand, AB23A increased the level of hepatic chenodeoxycholic acid (CDCA), and activated the hepatic BSEP signaling. The activation of hepatic FXR-BSEP signaling by AB23A in ovariectomized mice was accompanied by the reduction of liver cholesterol, hepatic lipolysis, and bile acids efflux, and reduced the damage of atherosclerosis. In vitro, AB23A fixed abnormal lipid metabolism in L02 cells and increased the expression of FXR, BSEP and SHP. Moreover, the inhibition and silencing of FXR canceled the regulation of BSEP by AB23A in L02 cells. CONCLUSION: Our results shed light into the mechanisms behind the cholesterol-lowering of AB23A, and increasing FXR-BSEP signaling by AB23A may be a potential postmenopausal atherosclerosis therapy.


Subject(s)
Atherosclerosis , Bile Acids and Salts , Animals , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Bile Acids and Salts/metabolism , Cholestenones , Cholesterol/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Female , Humans , Liver , Mice
6.
Acta Pharmacol Sin ; 41(11): 1476-1486, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32934346

ABSTRACT

Recent studies demonstrate that diet quercetin (Quer) has obvious bone protective effects on ovariectomized rodents but thus far there is no direct evidence to support the inhibitory effect of Quer on bone loss caused by long-term unloading. In the present study, we investigated whether Quer could prevent bone loss induced by unloading in mice. Mice were subjected to hindlimb suspension (HLS) and received Quer (25, 50, 100 mg· kg-1 ·day-1, ig) for 4 weeks. Before euthanasia blood sample was collected; the femurs were harvested and subjected to MicroCT analysis. We showed that Quer administration markedly improved bone microstructure evidenced by dose-dependently reversing the reduction in bone volume per tissue volume, trabecular number, and bone mineral density, and the increase of trabecular spacing in mice with HLS. Analysis of serum markers and bone histometric parameters confirmed that Quer at both middle and high doses significantly decreased bone resorption-related markers collagen type I and tartrate-resistant acid phosphatase 5b, and increased bone formation-related marker procollagen 1 N-terminal propeptide as compared with HLS group. Treatment with Quer (1, 2, 5 µM) dose-dependently inhibited RANKL-induced osteoclastogenesis through promoting the expression of antioxidant hormone stanniocalcin 1 (STC1) and decreasing ROS generation; knockdown of STC1 blocked the inhibitory effect of Quer on ROS generation. Knockdown of STC1 also significantly promoted osteoclastogenesis in primary osteoclasts. In conclusion, Quer protects bones and prevents unloading-caused bone loss in mice through STC1-mediated inhibition of osteoclastogenesis. The findings suggest that Quer has the potential to prevent and treat off-load bone loss as an alternative supplement.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Bone Resorption/prevention & control , Glycoproteins/metabolism , Osteogenesis/drug effects , Quercetin/therapeutic use , Animals , Bone Resorption/pathology , Bone and Bones/drug effects , Bone and Bones/pathology , Hindlimb Suspension , Male , Mice, Inbred C57BL , Osteoclasts/drug effects , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2224-2229, 2018 Jun.
Article in Chinese | MEDLINE | ID: mdl-29945371

ABSTRACT

Liver disease has become the world's fifth deadliest disease, and its incidence is increasing year by year. According to official data, viral hepatitis is high incidence in China, the condition is grim that a quarter of the patients can develop into chronic liver disease. Liver disease prevention is one of the key research topic of medical science, searching for the natural medicines of helping treat virus and human immunity has become the research focuses in current medical science field. Zhuang medicines were developed from Zhuang medical theory and practice, which are the traditional medicine used by Zhuang ancestors. The long period of experiments and clinical researches suggest that Zhuang medicines have therapeutic effects for liver disease and significant inhibitory effects on liver virus. Compared with modern medical therapy in the treatment of liver disease, Zhuang medicines therapy have more advantages in virus resistance, enzyme activity reducing, immunity improving and disease control. This study provides the overview of therapeutic effect and its mechanism on liver disease from active ingredients, effective parts, extracts and compound preparation, to provide reference for the study of Zhuang medicines' therapeutic effects on liver disease and research progress.


Subject(s)
Biomedical Research , Liver Diseases/therapy , Medicine, Chinese Traditional , China , Humans
8.
Sensors (Basel) ; 17(2)2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28212326

ABSTRACT

A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid) was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL-1 was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL-1. The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable.

SELECTION OF CITATIONS
SEARCH DETAIL