Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Oncol (Dordr) ; 47(3): 759-777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38294647

ABSTRACT

BACKGROUND: In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION: This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.


Subject(s)
Medical Oncology , Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/genetics , Neoplasms/classification , Neoplasms/metabolism , Medical Oncology/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Genomics/methods , Proteomics/methods
2.
Comput Struct Biotechnol J ; 20: 3449-3460, 2022.
Article in English | MEDLINE | ID: mdl-35832634

ABSTRACT

Background: Pharmacogenomics is crucial for individualized drug therapy and plays an increasingly vital role in precision medicine decision-making. However, pharmacogenomics-based molecular subtypes and their potential clinical significance remain primarily unexplored in lung adenocarcinoma (LUAD). Methods: A total of 2065 samples were recruited from eight independent cohorts. Pharmacogenomics data were generated from the profiling of relative inhibition simultaneously in mixtures (PRISM) and the genomics of drug sensitivity in cancer (GDSC) databases. Multiple bioinformatics approaches were performed to identify pharmacogenomics-based subtypes and find subtype-specific properties. Results: Three reproducible molecular subtypes were found, which were independent prognostic factors and highly associated with stage, survival status, and accepted molecular subtypes. Pharmacogenomics-based subtypes had distinct molecular characteristics: S-Ⅰ was inflammatory, proliferative, and immune-evasion; S-Ⅱ was proliferative and genetics-driven; S-III was metabolic and methylation-driven. Finally, our study provided subtype-guided personalized treatment strategies: Immune checkpoint blockers (ICBs), doxorubicin, tipifarnib, AZ628, and AZD6244 were for S-Ⅰ; Cisplatin, camptothecin, roscovitine, and A.443654 were for S-Ⅱ; Docetaxel, paclitaxel, vinorelbine, and BIBW2992 were for S-III. Conclusion: We provided a novel molecular classification strategy and revealed three pharmacogenomics-based subtypes for LUAD patients, which uncovered potential subtype-related and patient-specific therapeutic strategies.

3.
Nat Commun ; 13(1): 816, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145098

ABSTRACT

Long noncoding RNAs (lncRNAs) are recently implicated in modifying immunology in colorectal cancer (CRC). Nevertheless, the clinical significance of immune-related lncRNAs remains largely unexplored. In this study, we develope a machine learning-based integrative procedure for constructing a consensus immune-related lncRNA signature (IRLS). IRLS is an independent risk factor for overall survival and displays stable and powerful performance, but only demonstrates limited predictive value for relapse-free survival. Additionally, IRLS possesses distinctly superior accuracy than traditional clinical variables, molecular features, and 109 published signatures. Besides, the high-risk group is sensitive to fluorouracil-based adjuvant chemotherapy, while the low-risk group benefits more from bevacizumab. Notably, the low-risk group displays abundant lymphocyte infiltration, high expression of CD8A and PD-L1, and a response to pembrolizumab. Taken together, IRLS could serve as a robust and promising tool to improve clinical outcomes for individual CRC patients.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Machine Learning , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , CD8 Antigens/genetics , CD8 Antigens/metabolism , Chemotherapy, Adjuvant , Fluorouracil , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Recurrence, Local/genetics , Risk Factors
4.
Article in English | MEDLINE | ID: mdl-33564320

ABSTRACT

The abnormal neurites have long been regarded as the main player contributing to the poor outcome of patients with subarachnoid hemorrhage (SAH). (-)-Eigallocatechin-3-gallate (EGCG), the major biological component of tea catechin, exhibited strong neuroprotective effects against central nervous system diseases; however, the role of EGCG-mediated neurite outgrowth after SAH has not been delineated. Here, the effect of reactive oxygen species (ROS)/integrin ß1/FAK/p38 pathway on neurite outgrowth was investigated. As expected, oxyhemoglobin- (OxyHb-) induced excessive ROS level was significantly reduced by EGCG as well as antioxidant N-acetyl-l-cysteine (NAC). Consequently, the expression of integrin ß1 was significantly inhibited by EGCG and NAC. Meanwhile, EGCG significantly inhibited the overexpression of phosphorylated FAK and p38 to basal level after SAH. As a result, the abnormal neurites and cell injury were rescued by EGCG, which eventually increased energy generation and neurological score after SAH. These results suggested that EGCG promoted neurite outgrowth after SAH by inhibition of ROS/integrin ß1/FAK/p38 signaling pathway. Therefore, EGCG might be a new pharmacological agent that targets neurite outgrowth in SAH therapy.

SELECTION OF CITATIONS
SEARCH DETAIL