Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Hazard Mater ; 469: 134098, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522198

ABSTRACT

To investigate the efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders, in this study, a mice model of metabolic disorders induced by BPA was developed to investigate the efficacy and mechanism of EGCG using microbiomes and metabolomics. The results showed that EGCG reduced body weight, liver weight ratio, and triglyceride and total cholesterol levels in mice by decreasing the mRNA expression of genes related to fatty acid synthesis (Elov16) and cholesterol synthesis (CYP4A14) and increasing the mRNA expression of genes related to fatty acid oxidation (Lss) and cholesterol metabolism (Cyp7a1). In addition, EGCG normalized BPA-induced intestinal microbial dysbiosis. Metabolic pathway analysis showed that low-dose EGCG was more effective than high-dose EGCG at affecting the biosynthesis of L-cysteine, glycerophosphorylcholine, and palmitoleic acid. These results provide specific data and a theoretical basis for the risk assessment of BPA and the utilization of EGCG.


Subject(s)
Benzhydryl Compounds , Catechin/analogs & derivatives , Metabolic Diseases , Phenols , Mice , Animals , Cholesterol , RNA, Messenger , Fatty Acids
2.
J Agric Food Chem ; 71(48): 19045-19053, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37982559

ABSTRACT

Pyrrolizidine alkaloids (PAs) have been detected in tea and can threaten human health. However, the specific source of PAs in tea is still unclear. Here, 88 dried tea products collected from six major tea-producing areas in Anhui Province, China, were analyzed. The detection frequency was 76%. The content of total PAs in dried tea was between 1.1 and 90.5 µg/kg, which was all below the MRL recommended by the European Union (150 µg/kg). In the Shexian tea garden, PAs in the weeds and weed rhizospheric soil around tea plants and the fresh tea leaves were analyzed. Intermedine (Im), intermedine-N-oxide (ImNO), and jacobine-N-oxide (JbNO) were transferred through the weed-to-soil-to-tea route into the fresh tea leaves; only Im and ImNO were detected in dried tea samples. Potential risk of the total PAs in the tea infusion was assessed according to the margin of exposure method, and it might be a low concern for public health.


Subject(s)
Camellia sinensis , Pyrrolizidine Alkaloids , Humans , Pyrrolizidine Alkaloids/analysis , Plant Weeds , Tea , Risk Assessment , Oxides
3.
Sci Total Environ ; 806(Pt 4): 150863, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34626633

ABSTRACT

Enantioselective metabolism of chiral pesticide in plants is very important. In vitro system has become an effective means to study the metabolism of pesticides in plants, but the study on the metabolism of chiral pesticides has not been reported. This work compared the enantiomer metabolic behavior of acephate and its metabolite methamidophos between tea cell suspensions and excised tea stem with leaves. (±)-Acephate could be absorbed and transferred well to top leaves by the cut end of excised stem after 24 h. (±)-Methamidophos was derived from the metabolism of (±)-acephate in tea plants at 3-5% in leaves and 2-3% in stems at 216 h. The content of (+)-methamidophos was 1.5 times higher than that of (-)-methamidophos in excised leaves. Though both (±)-acephate and (±)-methamidophos could be metabolized well by cell suspension, (±)-acephate and (±)-methamidophos was non-enantioselectively metabolized in cell suspension. It was shown that using the excised tea stem with leaves for chiral pesticide metabolism studies was much closer to intact plant than cell suspensions. This result also established an effective and easily available in vitro metabolic model for the study of enantioselective metabolism of chiral contaminants from environment.


Subject(s)
Camellia sinensis , Insecticides , Insecticides/analysis , Organothiophosphorus Compounds , Phosphoramides , Plant Leaves/chemistry , Stereoisomerism , Suspensions , Tea
SELECTION OF CITATIONS
SEARCH DETAIL