Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 419: 136081, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37037133

ABSTRACT

Milk fat globule membrane (MFGM) proteins are highly glycosylated and involved in various biological processes within the body. However, information on site-specific N-glycosylation of MFGM glycoproteins in donkey and human milk remains limited. This study aimed to map the most comprehensive site-specific N-glycosylation fingerprinting of donkey and human MFGM glycoproteins using a site-specific glycoproteomics strategy. We identified 1,360, 457, 2,617, and 986 site-specific N-glycans from 296, 77, 214, and 196 N-glycoproteins in donkey colostrum (DC), donkey mature milk (DM), human colostrum (HC), and human mature milk (HM), respectively. Bioinformatics was used to describe the structure-activity relationships of DC, DM, HC, and HM MFGM N-glycoproteins. The results revealed differences in the molecular composition of donkey and human MFGM N-glycoproteins and the dynamic changes to site-specific N-glycosylation of donkey and human MFGM glycoproteins during lactation, deepening our understanding of the composition of donkey and human MFGM N-glycoproteins and their potential physiological roles.


Subject(s)
Colostrum , Proteome , Animals , Female , Humans , Pregnancy , Colostrum/metabolism , Equidae , Glycolipids , Glycoproteins/metabolism , Glycosylation , Lipid Droplets/metabolism , Milk Proteins/metabolism , Milk, Human/metabolism , Proteome/metabolism , Proteomics , Tandem Mass Spectrometry
2.
Carbohydr Polym ; 306: 120588, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746580

ABSTRACT

Human milk fat globule membrane (MFGM) proteins, which are N-glycosylated, play essential roles in neonatal development and physiological health. However, the profiles and landscape changes in the site-specific N-glycosylation of human MFGM proteins during lactation remain unclear. Therefore, in this study, based on an intact glycopeptide-centred strategy, 2617 unique site-specific N-glycans of 221 MFGM glycoproteins in human colostrum and 986 unique site-specific N-glycans of 200 MFGM glycoproteins in mature milk were characterised and quantified using label-free glycoproteomics. With milk maturation, 33 site-specific N-glycans on 10 N-glycoproteins increased significantly, and 113 site-specific N-glycans on 25 N-glycoproteins decreased significantly. Moreover, human MFGM glycoproteins with core-α1,6-fucosylated structures and Lewis and sialylated branching structures play a role in the biological processes of antigen processing and presentation. This study reveals the dynamic changes in human MFGM protein N-glycosylation patterns during lactation. Meanwhile, the study deepens our understanding of site-specific N-glycosylation of human MFGM glycoproteins. The results of the study provide a background reference for the development of infant formulas.


Subject(s)
Colostrum , Membrane Proteins , Female , Pregnancy , Infant, Newborn , Humans , Colostrum/chemistry , Colostrum/metabolism , Membrane Proteins/metabolism , Milk Proteins/chemistry , Tandem Mass Spectrometry , Glycoproteins/chemistry , Milk, Human/chemistry
3.
Drug Deliv ; 27(1): 1147-1155, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32729341

ABSTRACT

Increasingly attention has been paid to the transdermal drug delivery systems with microneedles owing to their excellent compliance, high efficiency, and controllable drug release, therefore, become promising alternative with tremendous advantages for delivering specific drugs such as huperzine A (Hup A) for treatment of Alzheimer's disease (AD) yet with low oral bioavailability. The purpose of the present study is to design, prepare, and evaluate a dissolving microneedle patch (DMNP) as a transdermal delivery system for the Hup A, investigating its in vitro drug release profiles and in vivo pharmacokinetics as well as pharmacodynamics treating of AD. Skin penetration experiments and intradermal dissolution tests showed that the blank DMNP could successfully penetrate the skin with an adequate depth and could be quickly dissolved within 5 min. In vitro transdermal release tests exhibited that more than 80% of the Hup A was accumulatively permeated from DMNP through the skin within three days, indicating a sustained release profile. In vivo pharmacokinetic analysis demonstrated that the DMNP group resulted in longer T max (twofold), longer t 1/2 (fivefold), lower C max (3:4), and larger AUC(0-∞) (twofold), compared with the oral group at the same dose of Hup A. Pharmacodynamic research showed a significant improvement in cognitive function in AD rats treated with DMNP-Hup A and Oral-Hup A, as compared to the model group without treatment. Those results demonstrated that this predesigned DMNP is a promising alternative to deliver Hup A transdermally for the treatment of AD.


Subject(s)
Alkaloids/administration & dosage , Alkaloids/pharmacology , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/pharmacology , Microinjections/methods , Sesquiterpenes/administration & dosage , Sesquiterpenes/pharmacology , Administration, Cutaneous , Alkaloids/pharmacokinetics , Animals , Area Under Curve , Biocompatible Materials , Cholinesterase Inhibitors/pharmacokinetics , Drug Delivery Systems , Drug Liberation , Half-Life , Male , Needles , Rats , Rats, Sprague-Dawley , Sesquiterpenes/pharmacokinetics , Skin/metabolism
4.
Food Chem ; 310: 125866, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-31784068

ABSTRACT

The composition of donkey milk is similar to that of human milk. However, the lipid content in donkey milk is lower than that in human milk. Thus far, the lipid composition of donkey milk during lactation has not been well-studied. Through mass spectroscopy-based quantitative lipidomics, we analyzed lipids in donkey colostrum (DC) and mature milk (DM). Thirteen subclasses of 335 lipids were identified in both DC and DM; 60 lipids - 17 upregulated and 43 downregulated - were differentially regulated between DM and DC (Variable Importance in Projection >1, P < 0.05), demonstrating that lipid composition changed with lactation. These different lipids were involved in 19 metabolic pathways, of which glycerophospholipid, linoleic acid, alpha-linolenic acid, glycosylphosphatidylinositol-anchor, glycerolipid, and arachidonic acid metabolism were the most relevant. Our results provide insights into quantitative alterations in donkey milk lipids during lactation, development of donkey milk products, and screening of potential biomarkers.


Subject(s)
Lactation , Lipidomics/methods , Lipids/analysis , Milk/chemistry , Animals , Colostrum/metabolism , Equidae , Fatty Acids/metabolism , Female
SELECTION OF CITATIONS
SEARCH DETAIL