Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 326: 117927, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38373665

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY: To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS: The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS: JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION: Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.


Subject(s)
Asthma , Drugs, Chinese Herbal , Immunity, Innate , Mice , Animals , Interleukin-33 , Interleukin-13 , Interleukin-5 , Molecular Docking Simulation , Lymphocytes/metabolism , Lung , Inflammation/drug therapy , Inflammation/pathology , Cytokines/metabolism , Bronchoalveolar Lavage Fluid , Immunoglobulin E , Ovalbumin/pharmacology , Mice, Inbred BALB C , Disease Models, Animal
2.
Front Pharmacol ; 13: 812587, 2022.
Article in English | MEDLINE | ID: mdl-35185568

ABSTRACT

Kangfuxiaoyan suppository (KFXYS) is a commonly used traditional Chinese medicine (TCM) preparation for the treatment of chronic pelvic inflammatory disease (CPID) clinically, and its safety and effectiveness have been well verified. However, the potential mechanism remains unclear. The integrated strategy of metabolomics and network pharmacology was employed in the study to reveal the potential mechanism of KFXYS in the treatment of CPID. Our research consists of five steps. First, the effect of KFXYS in reversing uterine inflammation indexes was verified. Second, based on the comprehensive characterization of 123 chemical ingredients of KFXYS, the ingredients of KFXYS absorbed into blood were identified by UPLC-Q-TOF/MS, then ADME research was carried out on the main ingredients. Third, the differential metabolites with significant correlation to inflammatory indexes were discovered by metabolomics and correlation analysis. Fourth, the potential targets and pathways of KFXYS in treating CPID were predicted by network pharmacology based on the ingredients which had good ADME behavior. Fifth, the proteins in common pathways of metabolomics and network pharmacology were used to screen the key targets from the potential targets of network pharmacology, and the potential mechanism of KFXYS in treating CPID was clarified. As a result, KFXYS significantly reversed the uterine inflammation indexes, including IL-1 and IL-6. The ingredients absorbed into blood including matrine, sophocarpine, aloin, esculetin-O-glucuronide, 7,4'-dihydroxyisoflavone-O-glucuronide, and 4'-methoxyisoflavone-7-O-glucuronide had good ADME behavior in vivo. Among the differential metabolites, Leukotriene A4, 5-Hydroxyindoleacetic acid, Ornithine, Arginine, and PC (20:1 (11Z)/20:4 (8Z,11Z,14Z,17Z)) were significant correlation to inflammation indexes. The integration analysis of metabolomics and network pharmacology shows that KFXYS may regulate the key targets including ARG1, NOS2, NOS3, etc. We speculate that ingredients of KFXYS, such as matrine, sophocarpine, aloin etc. act on the key proteins including ARG1, NOS2, and NOS3, to exert anti-inflammatory effect.

3.
Redox Biol ; 41: 101948, 2021 05.
Article in English | MEDLINE | ID: mdl-33774475

ABSTRACT

Mitochondria harbor a unique fatty acid synthesis pathway (mtFAS) with mysterious functions gaining increasing interest, while its involvement in metabolic regulation is essentially unknown. Here we show that 3-Hydroxyacyl-ACP dehydratase (HTD2), a key enzyme in mtFAS pathway was primarily downregulated in adipocytes of mice under metabolic disorders, accompanied by decreased de novo production of lipoic acid, which is the byproduct of mtFAS pathway. Knockdown of Htd2 in 3T3-L1 preadipocytes or differentiated 3T3-L1 mature adipocytes impaired mitochondrial function via suppression of complex I activity, resulting in enhanced oxidative stress and impaired insulin sensitivity, which were all attenuated by supplement of lipoic acid. Moreover, lipidomic study revealed limited lipid alterations in mtFAS deficient cells which primarily presenting accumulation of triglycerides, attributed to mitochondrial dysfunction. Collectively, the present study highlighted the pivotal role of mtFAS pathway in regulating mitochondrial function and adipocytes insulin sensitivity, demonstrating supportive evidence for lipoic acid being potential effective nutrient for improving insulin resistance and related metabolic disorders.


Subject(s)
Insulin Resistance , Thioctic Acid , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Insulin/metabolism , Mice , Mitochondria
4.
Exp Brain Res ; 235(12): 3743-3755, 2017 12.
Article in English | MEDLINE | ID: mdl-28956096

ABSTRACT

This study aimed to investigate the functional connectivity in the brain during the cross-modal integration of polyphonic characters in Chinese audio-visual sentences. The visual sentences were all semantically reasonable and the audible pronunciations of the polyphonic characters in corresponding sentences contexts varied in four conditions. To measure the functional connectivity, correlation, coherence and phase synchronization index (PSI) were used, and then multivariate pattern analysis was performed to detect the consensus functional connectivity patterns. These analyses were confined in the time windows of three event-related potential components of P200, N400 and late positive shift (LPS) to investigate the dynamic changes of the connectivity patterns at different cognitive stages. We found that when differentiating the polyphonic characters with abnormal pronunciations from that with the appreciate ones in audio-visual sentences, significant classification results were obtained based on the coherence in the time window of the P200 component, the correlation in the time window of the N400 component and the coherence and PSI in the time window the LPS component. Moreover, the spatial distributions in these time windows were also different, with the recruitment of frontal sites in the time window of the P200 component, the frontal-central-parietal regions in the time window of the N400 component and the central-parietal sites in the time window of the LPS component. These findings demonstrate that the functional interaction mechanisms are different at different stages of audio-visual integration of polyphonic characters.


Subject(s)
Asian People/psychology , Brain Mapping , Evoked Potentials/physiology , Phonetics , Semantics , Acoustic Stimulation , Adult , Electroencephalography , Electrooculography , Female , Humans , Male , Models, Neurological , Photic Stimulation , Reaction Time/physiology , Statistics as Topic , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL