Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 123: 155193, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976692

ABSTRACT

BACKGROUND: Autoimmune myocarditis, with increasing incidence and limited therapeutic strategies, is in urgent need to explore its underlying mechanisms and effective drugs. Pyroptosis is a programmed cell death that may contribute to the pathogenesis of myocarditis. Nonetheless, no direct evidence validated the role of pyroptosis in autoimmune myocarditis. Lupeol (Lup), a pentacyclic triterpene, possesses various biological activities such as antidiabetic properties. However, the effects of Lup on autoimmune myocarditis and pyroptosis remain unelucidated. PURPOSE: This study aimed to reveal the role of pyroptosis in autoimmune myocarditis and explore the protective effects of Lup, and its engaged mechanisms. METHODS: The experimental autoimmune myocarditis (EAM) mouse model was established by immunization with a fragment of cardiac myosin in Balb/c mice. Lup and MCC950 were administered after EAM induction. The protective effects were assessed by inflammation score, cardiac injury, chronic fibrosis, and cardiac function. Mechanistically, the effects of Lup on the M1 polarization and pyroptosis of macrophages were evaluated. Transcriptome sequencing and molecular docking were subsequently employed, and the underlying mechanisms of Lup were further explored in vitro with small interfering RNA and adenovirus. RESULTS: Administration of Lup and MCC950 alleviated EAM progression. Western blotting and immunofluorescence staining identified macrophages as the primary cells undergoing pyroptosis. Lup inhibited the expression of pyroptosis-associated proteins in macrophages during EAM in a dose-dependent manner. Furthermore, Lup suppressed pyroptosis in both bone marrow-derived macrophages (BMDMs) and THP-1-derived macrophages in vitro. In addition, Lup inhibited the M1 polarization of macrophages both in vivo and in vitro. Mechanistically, the protective effects of Lup were demonstrated via the suppression of the nuclear factor-κΒ (NF-κB) signaling pathway. Transcriptome sequencing and molecular docking revealed the potential involvement of peroxisome proliferator-associated receptor α (PPARα). Subsequently, we demonstrated that Lup activated PPARα to reduce the expression level of LACC1, thereby inhibiting the NF-κB pathway and pyroptosis. CONCLUSION: Our findings indicated the crucial role of macrophage pyroptosis in the pathogenesis of EAM. Lup ameliorated EAM by inhibiting the M1 polarization and pyroptosis of macrophages through the PPARα/LACC1/NF-κB signaling pathway. Thus, our results provided a novel therapeutic target and agent for myocarditis.


Subject(s)
Autoimmune Diseases , Lupanes , Myocarditis , Mice , Animals , NF-kappa B/metabolism , PPAR alpha , Autoimmune Diseases/drug therapy , Pyroptosis , Molecular Docking Simulation , Peroxisome Proliferators/therapeutic use , Signal Transduction , Macrophages , Pentacyclic Triterpenes/pharmacology
2.
Mol Med ; 29(1): 15, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717782

ABSTRACT

BACKGROUND: Osteosarcoma is a malignant bone tumor that usually affects adolescents aged 15-19 y. The DNA damage response (DDR) is significantly enhanced in osteosarcoma, impairing the effect of systemic chemotherapy. Targeting the DDR process was considered a feasible strategy benefitting osteosarcoma patients. However, the clinical application of DDR inhibitors is not impressive because of their side effects. Chinese herbal medicines with high anti-tumor effects and low toxicity in the human body have gradually gained attention. 2-Hydroxy-3-methylanthraquinone (HMA), a Chinese medicine monomer found in the extract of Oldenlandia diffusa, exerts significant inhibitory effects on various tumors. However, its anti-osteosarcoma effects and defined molecular mechanisms have not been reported. METHODS: After HMA treatment, the proliferation and metastasis capacity of osteosarcoma cells was detected by CCK-8, colony formation, transwell assays and Annexin V-fluorescein isothiocyanate/propidium iodide staining. RNA-sequence, plasmid infection, RNA interference, Western blotting and immunofluorescence assay were used to investigate the molecular mechanism and effects of HMA inhibiting osteosarcoma. Rescue assay and CHIP assay was used to further verified the relationship between MYC, CHK1 and RAD51. RESULTS: HMA regulate MYC to inhibit osteosarcoma proliferation and DNA damage repair through PI3K/AKT signaling pathway. The results of RNA-seq, IHC, Western boltting etc. showed relationship between MYC, CHK1 and RAD51. Rescue assay and CHIP assay further verified HMA can impair homologous recombination repair through the MYC-CHK1-RAD51 pathway. CONCLUSION: HMA significantly inhibits osteosarcoma proliferation and homologous recombination repair through the MYC-CHK1-RAD51 pathway, which is mediated by the PI3K-AKT signaling pathway. This study investigated the exact mechanism of the anti-osteosarcoma effect of HMA and provided a potential feasible strategy for the clinical treatment of human osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Adolescent , Recombinational DNA Repair , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/pharmacology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation
3.
Genes (Basel) ; 13(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36553558

ABSTRACT

Physalis angulata var. villosa, rich in withanolides, has been used as a traditional Chinese medicine for many years. To date, few extensive molecular studies of this plant have been conducted. In the present study, the plastome of P. angulata var. villosa was sequenced, characterized and compared with that of other Physalis species, and a phylogenetic analysis was conducted in the family Solanaceae. The plastome of P. angulata var. villosa was 156,898 bp in length with a GC content of 37.52%, and exhibited a quadripartite structure typical of land plants, consisting of a large single-copy (LSC, 87,108 bp) region, a small single-copy (SSC, 18,462 bp) region and a pair of inverted repeats (IR: IRA and IRB, 25,664 bp each). The plastome contained 131 genes, of which 114 were unique and 17 were duplicated in IR regions. The genome consisted of 85 protein-coding genes, eight rRNA genes and 38 tRNA genes. A total of 38 long, repeat sequences of three types were identified in the plastome, of which forward repeats had the highest frequency. Simple sequence repeats (SSRs) analysis revealed a total of 57 SSRs, of which the T mononucleotide constituted the majority, with most of SSRs being located in the intergenic spacer regions. Comparative genomic analysis among nine Physalis species revealed that the single-copy regions were less conserved than the pair of inverted repeats, with most of the variation being found in the intergenic spacer regions rather than in the coding regions. Phylogenetic analysis indicated a close relationship between Physalis and Withania. In addition, Iochroma, Dunalia, Saracha and Eriolarynx were paraphyletic, and clustered together in the phylogenetic tree. Our study published the first sequence and assembly of the plastome of P. angulata var. villosa, reported its basic resources for evolutionary studies and provided an important tool for evaluating the phylogenetic relationship within the family Solanaceae.


Subject(s)
Physalis , Solanaceae , Phylogeny , Physalis/genetics , Solanaceae/genetics , Genomics , Microsatellite Repeats
4.
Molecules ; 25(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911607

ABSTRACT

Src plays a crucial role in many signaling pathways and contributes to a variety of cancers. Therefore, Src has long been considered an attractive drug target in oncology. However, the development of Src inhibitors with selectivity and novelty has been challenging. In the present study, pharmacophore-based virtual screening and molecular docking were carried out to identify potential Src inhibitors. A total of 891 molecules were obtained after pharmacophore-based virtual screening, and 10 molecules with high docking scores and strong interactions were selected as potential active molecules for further study. Absorption, distribution, metabolism, elimination and toxicity (ADMET) property evaluation was used to ascertain the drug-like properties of the obtained molecules. The proposed inhibitor-protein complexes were further subjected to molecular dynamics (MD) simulations involving root-mean-square deviation and root-mean-square fluctuation to explore the binding mode stability inside active pockets. Finally, two molecules (ZINC3214460 and ZINC1380384) were obtained as potential lead compounds against Src kinase. All these analyses provide a reference for the further development of novel Src inhibitors.


Subject(s)
Drug Discovery , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , src-Family Kinases/chemistry , Binding Sites , Databases, Pharmaceutical , Drug Discovery/methods , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Conformation , Molecular Structure , Protein Binding , Protein Interaction Domains and Motifs , Protein Kinase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Reproducibility of Results , src-Family Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL