Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Molecules ; 29(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542889

ABSTRACT

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from Perilla frutescens (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.


Subject(s)
Metal Nanoparticles , Neoplasms , Perilla frutescens , Humans , Antioxidants/pharmacology , Silver/pharmacology , Silver/chemistry , Rosmarinic Acid , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Adv Mater ; 36(14): e2309748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38165653

ABSTRACT

One-for-all phototheranostics, referring to a single component simultaneously exhibiting multiple optical imaging and therapeutic modalities, has attracted significant attention due to its excellent performance in cancer treatment. Benefitting from the superiority in balancing the diverse competing energy dissipation pathways, aggregation-induced emission luminogens (AIEgens) are proven to be ideal templates for constructing one-for-all multimodal phototheranostic agents. However, to this knowledge, the all-round AIEgens that can be triggered by a second near-infrared (NIR-II, 1000-1700 nm) light have not been reported. Given the deep tissue penetration and high maximum permissible exposure of the NIR-II excitation light, herein, this work reports for the first time an NIR-II laser excitable AIE small molecule (named BETT-2) with multimodal phototheranostic features by taking full use of the advantage of AIEgens in single molecule-facilitated versatility as well as synchronously maximizing the molecular donor-acceptor strength and conformational distortion. As formulated into nanoparticles (NPs), the high performance of BETT-2 NPs in NIR-II light-driven fluorescence-photoacoustic-photothermal trimodal imaging-guided photodynamic-photothermal synergistic therapy of orthotopic mouse breast tumors is fully demonstrated by the systematic in vitro and in vivo evaluations. This work offers valuable insights for developing NIR-II laser activatable one-for-all phototheranostic systems.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Light , Phototherapy/methods , Theranostic Nanomedicine/methods , Cell Line, Tumor
3.
J Affect Disord ; 347: 399-405, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38000475

ABSTRACT

BACKGROUND: Escitalopram can cause prolongation of the QT interval on the electrocardiogram (ECG). However, only some patients get pathological QTc prolongation in clinic. We investigated the influence of KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors on escitalopram-induced QTc prolongation. METHODS: A total of 713 patients prescribed escitalopram were identified and had at least one ECG recording in this retrospective study. 472 patients with two or more ECG data were divided into QTc prolongation (n = 119) and non-prolongation (n = 353) groups depending on the threshold change in QTc of 30 ms above baseline value (∆QTc ≥ 30 ms). 45 patients in the QTc prolongation group and 90 patients in the QTc non-prolongation group were genotyped for 43 single nucleotide polymorphisms (SNPs) of KCNQ1, KCNE1, and KCNH2 genes. RESULTS: Patients with QTc prolongation (∆QTc ≥ 30 ms) got higher escitalopram dose (10.3 mg) than patients without QTc prolongation (9.4 mg), although no significant relationship was found between QTc interval and escitalopram dose in the linear mixed model. Patients who were older/coronary disease/hypertension or carried with KCNE1 rs1805127 C allele, KCNE1 rs4817668 C allele, KCNH2 rs3807372 AG/GG genotype were significantly at risk for QTc prolongation (∆QTc ≥ 30 ms). Concomitant antipsychotic treatment was associated with a longer QTc interval. LIMITATIONS: A relatively small sample size and lack of the blood concentration of escitalopram restricted the accurate relationship between escitalopram dose and QTc interval. CONCLUSION: Our study revealed that KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors provide a complementary effect in escitalopram-induced QTc prolongation.


Subject(s)
Long QT Syndrome , Potassium Channels, Voltage-Gated , Humans , Escitalopram , Retrospective Studies , KCNQ1 Potassium Channel/genetics , Electrocardiography , Polymorphism, Single Nucleotide , Long QT Syndrome/chemically induced , Long QT Syndrome/genetics , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/adverse effects , ERG1 Potassium Channel/genetics
4.
Biomaterials ; 301: 122276, 2023 10.
Article in English | MEDLINE | ID: mdl-37579564

ABSTRACT

Photoimmunotherapy has been acknowledged to be an unprecedented strategy to obtain significantly improved cancer treatment efficacy. In this regard, the exploitation of high-performance multimodal phototheranostic agents is highly desired. Apart from tailoring electron donors, acceptor engineering is gradually rising as a deliberate approach in this field. Herein, we rationally designed a family of aggregation-induced emission (AIE)-active compounds with the same donors but different acceptors based on the acceptor engineering. Through finely adjusting the functional groups on electron acceptors, the electron affinity of electron acceptors and the conformation of the compounds were simultaneously modulated. It was found that one of the molecules (named DCTIC), bearing a moderately electrophilic electron acceptor and the best planarity, exhibited optimal phototheranostic properties in terms of light-harvesting ability, fluorescence emission, reactive oxygen species (ROS) production, and photothermal performance. For the purpose of amplified therapeutic outcomes, DCTIC was fabricated into tumor and mitochondria dual-targeted DCTIC nanoparticles (NPs), which afforded good performance in the fluorescence/photoacoustic/photothermal trimodal imaging-guided photodynamic/photothermal-synergized cancer immunotherapy with the combination of programmed cell death protein-1 (PD-1) antibody. Not only the primary tumors were totally eradicated, but efficient growth inhibition of distant tumors was also realized.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Phototherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Immunotherapy , Mitochondria , Theranostic Nanomedicine , Oxidants , Multimodal Imaging , Cell Line, Tumor
5.
Nat Commun ; 14(1): 2950, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221157

ABSTRACT

The immunologically "cold" microenvironment of triple negative breast cancer results in resistance to current immunotherapy. Here, we reveal the immunoadjuvant property of gas therapy with cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation to augment aggregation-induced emission (AIE)-active luminogen (AIEgen)-based photoimmunotherapy. A virus-mimicking hollow mesoporous tetrasulfide-doped organosilica is developed for co-encapsulation of AIEgen and manganese carbonyl to fabricate gas nanoadjuvant. As tetra-sulfide bonds are responsive to intratumoral glutathione, the gas nanoadjuvant achieves tumor-specific drug release, promotes photodynamic therapy, and produces hydrogen sulfide (H2S). Upon near-infrared laser irradiation, the AIEgen-mediated phototherapy triggers the burst of carbon monoxide (CO)/Mn2+. Both H2S and CO can destroy mitochondrial integrity to induce leakage of mitochondrial DNA into the cytoplasm, serving as gas immunoadjuvants to activate cGAS-STING pathway. Meanwhile, Mn2+ can sensitize cGAS to augment STING-mediated type I interferon production. Consequently, the gas nanoadjuvant potentiates photoimmunotherapy of poorly immunogenic breast tumors in female mice.


Subject(s)
Breast Neoplasms , Immunotherapy , Photochemotherapy , Animals , Female , Mice , Adjuvants, Immunologic , Light , Nucleotidyltransferases , Phototherapy , Breast Neoplasms/therapy
6.
J Gerontol B Psychol Sci Soc Sci ; 78(9): 1474-1483, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37216647

ABSTRACT

OBJECTIVES: Motor imagery has been used to investigate the cognitive mechanism of motor control. Although behavioral and electrophysiological changes in motor imagery in people with amnestic mild cognitive impairment (aMCI) have been reported, deficits in different types of imagery remain unclear. To explore this question, we used electroencephalography (EEG) to study neural correlates of visual imagery (VI) and kinesthetic imagery (KI) and their relationship to cognitive function in people with aMCI. METHODS: A hand laterality judgment task was used to induce implicit motor imagery in 29 people with aMCI and 40 healthy controls during EEG recording. Mass univariate and multivariate EEG analysis was applied to explore group differences in a data-driven manner. RESULTS: Modulation of stimuli orientation to event-related potential (ERP) amplitudes differed significantly between groups at 2 clusters located in the posterior-parietal and frontal areas. Multivariate decoding revealed sufficient representation of VI-related orientation features in both groups. Relative to healthy controls, the aMCI group lacked accurate representation of KI-related biomechanical features, suggesting deficits in automatic activation of KI strategy. Electrophysiological correlates were associated with episodic memory, visuospatial function, and executive function. Higher decoding accuracy of biomechanical features predicted better executive function via longer response time in the imagery task in the aMCI group. DISCUSSION: These findings reveal electrophysiological correlates related to motor imagery deficits in aMCI, including local ERP amplitudes and large-scale activity patterns. Alterations in EEG activity are related to cognitive function in multiple domains, including episodic memory, suggesting the potential of these EEG indices as biomarkers of cognitive impairment.


Subject(s)
Cognitive Dysfunction , Electroencephalography , Humans , Cognitive Dysfunction/psychology , Cognition , Executive Function , Evoked Potentials/physiology , Neuropsychological Tests
7.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903293

ABSTRACT

The phytochemical investigation of the roots of the traditional Chinese medicinal plant Sophora flavescens led to the isolation of two novel prenylflavonoids with an unusual cyclohexyl substituent instead of the common aromatic ring B, named 4',4'-dimethoxy-sophvein (17) and sophvein-4'-one (18), and 34 known compounds (1-16, 19-36). The structures of these chemical compounds were determined by spectroscopic techniques, including 1D-, 2D-NMR, and HRESIMS data. Furthermore, evaluations of nitric oxide (NO) production inhibitory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells indicated that some compounds exhibited obvious inhibition effects, with IC50 ranged from 4.6 ± 1.1 to 14.4 ± 0.4 µM. Moreover, additional research demonstrated that some compounds inhibited the growth of HepG2 cells, with an IC50 ranging from 0.46 ± 0.1 to 48.6 ± 0.8 µM. These results suggest that flavonoid derivatives from the roots of S. flavescens can be used as a latent source of antiproliferative or anti-inflammatory agents.


Subject(s)
Flavonoids , Sophora , Flavonoids/chemistry , Sophora flavescens , Sophora/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Roots/chemistry , Plant Extracts/pharmacology , Magnetic Resonance Spectroscopy
8.
J Affect Disord ; 329: 55-63, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36842648

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a highly heterogeneous disease, which brings great difficulties to clinical diagnosis and therapy. Its mechanism is still unknown. Prior neuroimaging studies mainly focused on mean differences between patients and healthy controls (HC), largely ignoring individual differences between patients. METHODS: This study included 112 MDD patients and 93 HC subjects. Resting-state functional MRI data were obtained to examine the patterns of individual variability of brain functional connectivity (IVFC). The genetic risk of pathways including dopamine, 5-hydroxytryptamine (5-HT), norepinephrine (NE), hypothalamic-pituitary-adrenal (HPA) axis, and synaptic plasticity was assessed by multilocus genetic profile scores (MGPS), respectively. RESULTS: The IVFC pattern of the MDD group was similar but higher than that in HCs. The inter-network functional connectivity in the default mode network contributed to altered IVFC in MDD. 5-HT, NE, and HPA pathway genes affected IVFC in MDD patients. The age of onset, duration, severity, and treatment response, were correlated with IVFC. IVFC in the left ventromedial prefrontal cortex had a mediating effect between MGPS of the 5-HT pathway and baseline depression severity. LIMITATIONS: Environmental factors and differences in locations of functional areas across individuals were not taken into account. CONCLUSIONS: This study found MDD patients had significantly different inter-individual functional connectivity variations than healthy people, and genetic risk might affect clinical manifestations through brain function heterogeneity.


Subject(s)
Biological Variation, Individual , Brain , Depressive Disorder, Major , Genetic Predisposition to Disease , Multifactorial Inheritance , Neural Pathways , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Brain/metabolism , Serotonin/metabolism , Norepinephrine/metabolism , Humans , Male , Female , Adult , Adrenal Glands/metabolism , Pituitary Gland/metabolism , Hypothalamus/metabolism , Prefrontal Cortex/metabolism
9.
PLoS One ; 18(1): e0279388, 2023.
Article in English | MEDLINE | ID: mdl-36598892

ABSTRACT

INTRODUCTION: Anal fistula is the natural evolution of perianal abscess and one of the most common perianal diseases for adults. For complex fistula, it is still very challenging for anorectal surgeons to manage. With the introduction of laser technique in surgery, it is becoming more and more widely used for the treatment of cryptoglandular anal fistula. During the past decade, numerous studies have reported the clinical effectiveness and postoperative outcomes of different forms of laser treatment for anal fistula. However, as these studies were varied in terms of baseline characteristics, the evidence for the true clinical effectiveness of laser treatment for anal fistula need further critical appraisal. Therefore, the purpose of this study is to evaluate the outcomes of surgical laser therapy for cryptoglandular anal fistula stratified by laser type and Parks' classification through a synthesis of quantitative and qualitative evidence. METHODS AND ANALYSIS: This study will be carried out with adherence to the Cochrane Handbook. We will search PubMed, Cochrane Library, and Embase until June, 2022 to identify all relevant interventional and observational studies examining the effects of laser therapy on the clinical outcomes for cryptoglandular anal fistula. Data extraction from eligible studies will be performed independently by two unblinded authors using standardized extraction forms. Risk of bias assessment for each study will be conducted using Cochrane tool for randomized controlled trials (RCTs) and the Newcastle-Ottawa scale (NOS) tool for observational studies. The DerSimonian-Laird random-effects model will be used to calculate the pooled estimates. Heterogeneity will be examined by subgroup analysis stratified by laser type and Parks' classification and other study characteristics. Potential publication bias will be assessed by funnel plot symmetrical and Egger's regression tests. CONCLUSIONS: The synthesis of quantitative and qualitative evidence of this systemic review will yield updated and comprehensive evidence of laser treatment on specific outcomes, which can provide anorectal surgeons with high level evidence-based recommendations to improve patient care and clinical outcomes. OSF registration number: DOI 10.17605/OSF.IO/36ADW.


Subject(s)
Anus Diseases , Laser Therapy , Low-Level Light Therapy , Rectal Fistula , Adult , Humans , Rectal Fistula/surgery , Treatment Outcome , Anus Diseases/surgery , Meta-Analysis as Topic , Systematic Reviews as Topic
10.
Front Microbiol ; 13: 916371, 2022.
Article in English | MEDLINE | ID: mdl-35928166

ABSTRACT

Peganum harmala L. is a perennial herb of the Tribulus family and its aerial parts and seeds can be used as medicine in the traditional medicine of China. However, the differences in chemical components and antibacterial activity between different parts have not been reported. In this study, the chemical composition of the different parts of P. harmala was characterized by high-performance liquid chromatography (HPLC) and headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The antimicrobial activities of the different parts and some isolated components were also carried out on 12 bacterial strains and phytopathogenic fungi. The HPLC results revealed that the contents of harmine and harmaline in the seeds were higher than that in the aerial parts. A total of 94 volatile organic compounds (VOCs) were tentatively identified by HS-SPME-GC-MS for the first time. The major components were methyl hexadecanoate, p-xylene, octane, (Z)-9-octadecanoate, ethylbenzene, methyl octadecanoate, ethyl hexadecanoate, and methyl tetradecanoate. At the concentration of 800 µg·mL-1, the methanol extracts of seeds showed stronger antimicrobial activities with a wide antimicrobial spectrum, inhibiting Escherichia coli (ATCC 24433), Xanthomonas oryzae (ACCC 11602), and Xanthomonas axonopodis with inhibitory rates of more than 90%. Furthermore, harmine and harmaline showed better antibacterial activities against all the bacteria. These findings indicated that alkaloids from P. harmala could account for antimicrobial activity, which could be used as lead molecules in the development of new antimicrobial drugs.

11.
Appl Environ Microbiol ; 88(9): e0034122, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35442081

ABSTRACT

Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.


Subject(s)
NAD , Niacinamide , 2-Propanol , Formate Dehydrogenases/genetics , NADP , Regeneration
12.
Angew Chem Int Ed Engl ; 61(27): e202202614, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35344252

ABSTRACT

Synergistic photothermal immunotherapy has captured great attention owing to the mutually strengthening therapeutic outcomes towards both original tumors and abscopal tumors. Herein, a versatile theranostic agent displaying aggregation-induced emission, namely TPA-BT-DPTQ, was designed and prepared based on benzo[c]thiophene unit as a building block; it can be used for simultaneous fluorescence imaging (FLI) in the second near-infrared (NIR-II) window, photoacoustic imaging (PAI), photothermal imaging (PTI), and thermal eradication of tumors. Further experiments validate that photothermal therapy (PTT) mediated by TPA-BT-DPTQ nanoparticles not only destroys the primary tumor but also enhances immunogenicity for further suppressing the growth of tumors at distant sites. Furthermore, PTT combining a programmed death-ligand 1 (PD-L1) antibody prevents the metastasis and recurrence of cancer by potentiating the effect of immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Cell Line, Tumor , Humans , Immunotherapy , Multimodal Imaging , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/therapy , Photoacoustic Techniques/methods , Phototherapy/methods , Theranostic Nanomedicine/methods
13.
Environ Sci Pollut Res Int ; 29(2): 1746-1762, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34709552

ABSTRACT

The beet army worm, Spodoptera exigua, is a widely distributed polyphagous pest of economically important crops worldwide. The management of this pest insect continues to face many challenges. Despite synthetic chemicals posing a serious threat to the environment, these remain the conventional approach for controlling S. exigua in the field. An over-reliance on chemical control has not only led to selection for resistance to insecticides and to a reduction of natural enemies, but has also polluted various components of ecosystem. Given these increasing pressures on the ecosystem, there is a need to implement integrated pest management (IPM) approaches exploiting a wider range of tools (biotechnological approaches, microbial control, biological control, cultural control, and use of host plant resistance) for an alternative to chemical control. The IPM approach can not only reduce the hazard of chemical residues in the environment and associated health problems, but may also provide best strategies to control insect pests. This review synthesizes published information on insecticide resistance of S. exigua and explores alternative IPM approaches to control S. exigua.


Subject(s)
Beta vulgaris , Insecticides , Animals , Ecosystem , Insecticide Resistance , Insecticides/pharmacology , Larva , Spodoptera
14.
Eur J Med Chem ; 227: 113937, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34710744

ABSTRACT

Evodiamine and rutaecarpine are two alkaloids isolated from traditional Chinese herbal medicine Evodia rutaecarpa, which have been reported to have various biological activities in past decades. To explore the potential applications for evodiamine and rutaecarpine alkaloids and their derivatives, various kinds of evodiamine and rutaecarpine derivatives were designed and synthesized. Their antifungal profile against six phytopathogenic fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Sclerotinia sclerotiorum, and Magnaporthe oryzae were evaluated for the first time. Furthermore, a series of modified imidazole derivatives of rutaecarpine were synthesized to investigate the structure-activity relationship. The results of antifungal activities in vitro showed that imidazole derivative of rutaecarpine A1 exhibited broad-spectrum inhibitory activities against R. solani, B. cinerea, F. oxysporum, S. sclerotiorum, M. oryzae and F. graminearum with EC50 values of 1.97, 5.97, 12.72, 2.87 and 16.58 µg/mL, respectively. Preliminary mechanistic studies showed that compound A1 might cause mycelial abnormalities of S. sclerotiorum, mitochondrial distortion and swelling, and inhibition of sclerotia formation and germination. Moreover, the curative effects of compound A1 were 94.7%, 81.5%, 80.8%, 65.0% at 400, 200, 100, 50 µg/mL in vivo experiments, which was far more effective than the positive control azoxystrobin. Significantly, no phytotoxicity of compound A1 on oilseed rape leaves was observed obviously even at a high concentration of 400 µg/mL. Therefore, compound A1 is expected to be a novel leading structure for the development of new antifungal agents.


Subject(s)
Antifungal Agents/pharmacology , Drug Design , Indole Alkaloids/pharmacology , Quinazolines/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Ascomycota/drug effects , Botrytis/drug effects , Dose-Response Relationship, Drug , Fusarium/drug effects , Indole Alkaloids/chemical synthesis , Indole Alkaloids/chemistry , Microbial Sensitivity Tests , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Rhizoctonia/drug effects , Structure-Activity Relationship
15.
J Mater Chem B ; 9(47): 9754-9763, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34796365

ABSTRACT

Uncontrolled hemorrhage is the leading cause of trauma death. The development of safe and efficient hemostatic agents that can rapidly and effectively control bleeding is of great significance to rescue the injured. However, the mechanical, absorptive, and antibacterial properties of conventional two-dimensional hemostatic agents are not satisfactory. Herein, a series of effective three-dimensional hemostatic dressings (JWCNT/HBC sponges) are developed by chemical modification of joint-welded carbon nanotube (JWCNT) sponges with hydroxybutyl chitosan (HBC) for hemorrhage hemostasis. The JWCNT/HBC sponges exhibit high elasticity, porous structure, and suitable blood-absorption and blood-maintaining performance. Moreover, the introduction of HBC endows the JWCNT/HBC sponges with favorable blood compatibility and good antibacterial activity. The sponge treated with 0.5% HBC (JWCNT/0.5%HBC sponge) displays better antiseptic capability, faster blood clotting ability in vitro and shorter hemostasis time in vivo than the commercial gelatin sponge. The JWCNT/HBC sponges combine the advantages of JWCNT sponges and HBC in the adhesion and activation of platelets and red blood cells, thus becoming a good medical material for trauma hemostasis.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bandages , Chitosan/analogs & derivatives , Hemostasis/drug effects , Hemostatics/therapeutic use , Nanotubes, Carbon/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cell Line , Chitosan/chemistry , Chitosan/toxicity , Escherichia coli/drug effects , Female , Hemostatics/chemistry , Hemostatics/toxicity , Mice , Microbial Sensitivity Tests , Nanotubes, Carbon/toxicity , Porosity , Rats, Sprague-Dawley , Staphylococcus aureus/drug effects , Wounds and Injuries/drug therapy
16.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681623

ABSTRACT

Glycyrrhiza glabra (Licorice) belongs to the Fabaceae family and its extracts have exhibited significant fungicidal activity against phytopathogenic fungi, which has mainly been attributed to the presence of phenolic compounds such as flavonoids, isoflavonoids and chalcones. In this study, a series of licorice flavonoids, isoflavonoids and chalcones were evaluated for their fungicidal activity against phytopathogenic fungi. Among them, glabridin exhibited significant fungicidal activity against ten kinds of phytopathogenic fungi. Notably, glabridin displayed the most active against Sclerotinia sclerotiorum with an EC50 value of 6.78 µg/mL and was 8-fold more potent than azoxystrobin (EC50, 57.39 µg/mL). Moreover, the in vivo bioassay also demonstrated that glabridin could effectively control S. sclerotiorum. The mechanism studies revealed that glabridin could induce reactive oxygen species accumulation, the loss of mitochondrial membrane potential and cell membrane destruction through effecting the expression levels of phosphatidylserine decarboxylase that exerted its fungicidal activity. These findings indicated that glabridin exhibited pronounced fungicidal activities against S. sclerotiorum and could be served as a potential fungicidal candidate.


Subject(s)
Antifungal Agents/chemistry , Glycyrrhiza/chemistry , Isoflavones/chemistry , Phenols/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Ascomycota/drug effects , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cell Membrane Permeability/drug effects , Chalcones/chemistry , Chalcones/isolation & purification , Chalcones/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycyrrhiza/metabolism , Isoflavones/isolation & purification , Isoflavones/pharmacology , Membrane Potential, Mitochondrial/drug effects , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
17.
J Food Sci ; 86(10): 4393-4404, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34514602

ABSTRACT

Perilla seed oil (PSO) has a special aromatic odor, which is unpleasant to the personal preferences of some consumers. To this end, this article evaluated the differences in volatile organic compounds (VOCs), physicochemical characteristics, and fatty acid composition of PSO treated with ethanol (PSO-EA), activated carbon (PSO-AC), and activated kaolin (PSO-AK). The results showed that in the PSO, PSO-EA, PSO-AC, and PSO-AK samples, the content of linolenic acid, oleic acid, and linoleic acid hardly changed. Among the physicochemical characteristics of the four samples, the color difference between PSO and PSO-EA was greater than the color difference between PSO and PSO-AC, PSO-AK. The three treatment methods had the greatest impact on the PSO peroxide value but had little effect on other indicators. Gas chromatography-ion mobility spectrum results identified 28 known volatiles, of which aldehydes, alkenals, alcohols, ketones, and esters were the main groups. Fingerprint analysis found that PSO had an aromatic odor, which includes 1-hexanol, hexanal, and 2-pentylfuran; the removal effect of ethanol on VOCs in PSO was better than that of activated carbon and activated kaolin. The difference between the four oil samples was found from the strength of the VOCs' signals in a two-dimensional map. From the principal components analysis and the "nearest neighbor" fingerprint analysis, it was found that PSO is generally quite different from PSO-EA, PSO-AC, and PSO-AK, while in the "nearest neighbor" fingerprint analysis, PSO-AC and PSO-AK are similar in general. In short, PSO will have better applications in the food field. PRACTICAL APPLICATION: Treatment of PSO with ethanol, activated carbon, and activated kaolin is conducive to the comprehensive utilization of edible resources. In this work, ethanol, activated carbon, and activated kaolin were used to remove VOCs in PSO, and PSO-EA, PSO-AC, and PSO-AK were obtained. The perilla seed oil after these three treatment methods was tested for VOCs, physicochemical characteristics, and fatty acid composition. They can meet the needs of more consumers without affecting the fatty acid composition in the PSO, and have broad development prospects.


Subject(s)
Charcoal , Ethanol , Fatty Acids , Kaolin , alpha-Linolenic Acid , Charcoal/chemistry , Ethanol/chemistry , Fatty Acids/adverse effects , Food Handling/standards , Kaolin/chemistry , Plant Oils/chemistry , Volatile Organic Compounds/analysis , alpha-Linolenic Acid/chemistry
18.
Zhongguo Gu Shang ; 34(9): 814-20, 2021 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-34569204

ABSTRACT

OBJECTIVE: To explore clinical effect of acupoint application of Chinese herbal medicine in preventing postoperative nausea and vomiting after orthopaedic surgery under general anesthesia. METHODS: From January 2018 to December 2019, 168 patients who met inclusion criteria and were underwent selective spine surgery, were double-blind divided into two groups according to central random system, 84 patients in each group. In control group, there were 39 males and 45 females aged from 30 to 65 years old with an average of (53.83±9.17) years old, 37 patients were classified to typeⅠand 47 patients were typeⅡ according to American Society of Anesthesiologists (ASA) grading. In experiment group, there were 39 males and 45 females aged from 30 to 65 years old with an average of (54.08±9.00) years old; 32 patients were classified to typeⅠand 52 patients were typeⅡ according to ASA grading. Both of two groups were obtained acupoint application before anesthesia induction, and acupoint application were put on Zhongwan (CV 12) and bilateral Neiguan (PC 6) for 6 h, changed after 24 h, last for 2 d. The drug prescription of plasters in experimental group was consist of Rhizome Pinelliae Preparata, Ginger and Clove. The plasters in control group was consistent with drug plasters in experimental group in appearance and smell to the greatest extent. The ingredients were flour and excipients with 10% of experimental drug concentration. Incidence of nausea vomiting, visual analogue scale (VAS) of narusea degree at 24 h and 24 to 48 h after operation between two groups were compared, SF- 12 simple quality of life score before operation, 24 and 48 h after operation were also compared by using R3.6.1 Rstudio software by the third-party. RESULTS: There were no statistical differences in incidence of nausea vomiting, VAS of narusea degree at 24 h after operation (P>0.05), while there were no differences in incidence of nausea vomiting, VAS of narusea degree at 24 to 48 h after operation (P>0.05) . There were no statistical differences in SF-12 before operation, 24 and 48 h after opertaion (P>0.05). CONCLUSION: The curative effect of acupoint application of traditional Chinese medicine on the prevention and treatment of postoperative nausea and vomiting is not obvious.


Subject(s)
Drugs, Chinese Herbal , Orthopedic Procedures , Acupuncture Points , Adult , Aged , Anesthesia, General , Drugs, Chinese Herbal/therapeutic use , Female , Humans , Male , Middle Aged , Postoperative Nausea and Vomiting/prevention & control , Quality of Life
19.
Plant Physiol Biochem ; 164: 10-20, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33933946

ABSTRACT

Salvia miltiorrhiza is a traditional Chinese herbal medicine with tanshinone as one of the main bioactive components and has antitumor, antibacterial, anti-inflammatory properties, as well as other physiological functions. Tanshinone, as a secondary metabolite, is synthesized under salt stress or other environmental stresses. Oxidative stress is an important physiological response of plants to salt stress. Transcription factors (TFs) are believed to play regulatory roles in this process, and AP2/ERF TFs have significant effects on defense against the adversity of plants. However, investigations on the regulation of AP2/ERF TFs in tanshinone synthesis under salt stress are limited. In this research, the tanshinone content, related gene expression and activities of enzymes, and the markers of oxidative stress were determined. The results showed that SmAP1, SmAP2 and SmERF2 were AP2/ERF TFs with AP conserved sequences, whose relative expression levels increased and were positively correlated with the contents of tanshinone I (T-I), tanshinone IIA (T-IIA) and cryptotanshinone (CT) in the roots of Salvia miltiorrhiza. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased in the roots of Salvia miltiorrhiza. The expression levels of genes encoding enzymes and the activities of key enzymes in the tanshinone biosynthesis pathway increased accordingly. The results showed that AP2/ERF TFs could positively regulate the biosynthesis of tanshinone in the roots of Salvia miltiorrhiza under salt stress.


Subject(s)
Gene Expression Regulation, Plant , Salvia miltiorrhiza , Abietanes , Plant Roots , Salt Stress
20.
ACS Nano ; 15(4): 7328-7339, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33797216

ABSTRACT

Precise molecular engineering is the most fundamental and even a great challenging task for the development of small organic fluorophores used as phototheranostic agents in multimodal imaging-guided synergistic therapy. To the best of our knowledge, there have been no previous reports regarding the fine fabrication of molecular structure from a proof-of-concept study, providing a single molecule with all phototheranostic modalities. Herein, an electron donating-accepting (D-A) system is constructed by using triphenylamine derivatives as donors and diverse electron-deficient partners as acceptors, yielding aggregation-induced emission luminogens with tunable emission wavelength (up to 933 nm) and light absorption capability (ε up to 6.9 × 104 M-1 cm-1). Notably, by integrating the spin-orbit coupling-promoted carbonyl group and the strong stretching vibrations of -CN to the D-A systems, a highly performing phototheranostic agent, namely, MeTIC, is constructed. When encapsulating MeTIC into nanovehicles, the obtained MeTIC nanoparticles show excellent performance in multimodality theranostics for cancer treatment. This work is expected to provide an organic phototheranostic agent designing principle for potential clinical trials.


Subject(s)
Nanoparticles , Neoplasms , Humans , Multimodal Imaging , Phototherapy , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL