Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Biol Trace Elem Res ; 201(5): 2151-2161, 2023 May.
Article in English | MEDLINE | ID: mdl-35725996

ABSTRACT

Endometrial diseases, including uterine fibroids, polyps, intrauterine adhesion, endometritis, etc., are the major causes of infertility among women. However, the association between essential trace element status in women and the risk of endometrial disease is limited and unclear. This study aimed to investigate this association using a case-control study design; a total of 302 women patients with endometrial diseases and 302 healthy women were included. Compared to women in the control group, serum selenium (Se) (p = 0.024) and zinc (Zn) (p = 0.017) levels were significantly lower, while copper (Cu) (p = 0.004) and molybdenum (Mo) (p = 0.005) levels were significantly higher among women with endometrial diseases. In addition, compared to women in the first quartile of the copper/zinc (Cu/Zn) ratio value group, the adjusted ORs (95% CIs) of endometrial diseases were 1.50 (1.05, 2.14), 1.68 (1.18, 2.39), and 1.47 (1.02, 2.10), respectively, in the second, third, and fourth quartile of the Cu/Zn ratio value group (p trend = 0.047). In addition, the results from restricted cubic splines showed that the dose-response relationships of serum levels of these essential elements with the risk of endometrial diseases were nonlinear for Se, Cu, and Zn and relatively linear for Mo and Cu/Zn ratio. The present study showed serum levels of Zn and Se among women with endometrial diseases were significantly lower compared to that among healthy women, while serum levels of Cu and Mo were significantly higher, in addition, the serum Cu/Zn ratio value was also significantly and positively associated with the risk of endometrial diseases.


Subject(s)
Selenium , Trace Elements , Uterine Diseases , Humans , Female , Copper , Case-Control Studies , Zinc
2.
Front Endocrinol (Lausanne) ; 13: 906849, 2022.
Article in English | MEDLINE | ID: mdl-36387879

ABSTRACT

Background: Early embryonic arrest (EEA) leads to repeated cessation of fresh cycles among infertile women undergoing in vitro fertilization (IVF). Whether the levels of some essential trace elements [copper (Cu), zinc (Zn), selenium (Se) and cobalt (Co)] in the bodies of women are related to the risk of EEA warrants study. Objective: Our study aimed to investigate the associations of peripheral blood levels of Cu, Zn, Se, and Co and their mixtures with the risk of EEA. Methods: A total of 74 EEA cases (123 IVF cycles) and 157 controls (180 IVF cycles) from the reproductive center of the First Affiliated Hospital of Anhui Medical University in Hefei, China, between June 2017 and March 2020 were included in our study. Demographic and clinical data were collected from electronic medical records. Cu, Zn, Se, and Co levels were measured in blood samples collected on the day of oocyte retrieval when infertile women entered clinical treatment for the first time using an inductively coupled plasma mass spectrometer (ICP-MS). Generalized estimating equation (GEE) models were used to evaluate the associations of four essential trace element concentrations individually with the risk of EEA, and Bayesian kernel machine regression (BKMR) was used to explore the associations between four essential trace element mixtures and the risk of EEA. Results: Se concentrations of infertile women were significantly lower in the case group compared with the control group. Co levels were significantly higher in the case group compared with the control group. The differences in Cu and Zn concentrations between the two groups were not significant. Based on single-metal models, Co was positively associated with the risk of EEA before and after adjustment for all confounders (odd ratio (OR) = 1.72, 95% confidence interval (CI): 1.18-2.52; OR = 2.27, 95% CI: 1.37-3.77, respectively), and Se was negatively associated with the risk of EEA before adjustment for all confounders (OR = 0.18, 95% CI: 0.07-0.51). BKMR analyses showed that Se was significantly and negatively associated with the risk of EEA when all the other three metals (Cu, Zn, and Co) were fixed at the 25th, 50th, or 75th percentiles, whereas Zn displayed a significant and positive association with the risk of EEA when all the other three metals (Cu, Se and Co) were fixed at the 25th, 50th, or 75th percentiles. Co did not show any effect on the risk of EEA when all the other metals (Cu, Zn, and Se) were fixed at the 25th, 50th, or 75th percentiles. In addition, an increasing trend of the joint effect of four essential trace elements on the risk of EEA was found, although it was not statistically significant. Conclusion: The levels of essential trace elements (Cu, Zn, Se, and Co) might correlate with the risk of EEA to some extent. The present study might provide a real-world perspective on the relationship between essential trace elements and the risk of EEA when considering them as a single element or as mixtures.


Subject(s)
Infertility, Female , Selenium , Trace Elements , Humans , Female , Zinc , Copper , Cobalt , Bayes Theorem , Reproductive Techniques, Assisted
3.
Phytomedicine ; 101: 154133, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35504052

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is highly prevalent in southern China. The remote metastasis of advanced NPC requires chemotherapeutic treatments to reduce the mortality. Our previous work revealed that saucerneol (SN) showed cytotoxicity against several nasopharyngeal carcinoma (NPC) cells. This work aims to investigate the effect of SN in NPC growth and exploring the mechanism of action. STUDY DESIGN: Applying in vivo study, in vitro study and in silico study to indicate the mechanism of SN in inhibiting NPC growth. METHODS: Saucerneol (SN) toxicity was measured with MTT assay. NPC proliferation was measured with EdU and colony formation assays, cell cycle was detected with flow cytometry. NPC migration and invasion were measured with scratch assay and matrigel transwell method. Further, human NPC xenograft tumor models were established in nude mice to evaluate the therapeutic efficacy of SN in vivo. Toxicological analysis was performed on H&E staining and IHC. Quantitative real-time PCR and Western blot analyses were used to evaluate the expression levels of key molecules in PI3K/AKT/mTOR, MAPK, NF-κB, and HIF-1α signal pathways. Target predicting was conducted using computational method, and target identification was carried out by ATPase assay and TSA. RESULTS: SN, a potent NPC inhibitor that was previously isolated from Saururus chinensis in our lab, is proven to inhibit the proliferation and metastasis of HONE1 cell lines and inhibit the growth of human NPC xenografts in nude mice. Moreover, we further articulate the molecular mechanism of action for SN and, reveal that SN promotes the expression of cell cycle-dependent kinase inhibitory protein p21 Waf1/Cip1 through targeting Grp94 and then inhibiting PI3K/AKT signaling pathway as well as up-regulating p53 to disrupt the progression of HONE1 cells. CONCLUSION: SN significantly inhibits NPC cells proliferation and metastasis in vitro and in vivo via selectively inhibit Grp94 and then blocking PI3K/AKT/mTOR/HIF-1α signaling pathway. This study firstly provides a novel selective Grp94 inhibitor as a NPC candidate.


Subject(s)
Furans/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Lignans/pharmacology , Membrane Proteins/metabolism , Nasopharyngeal Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
4.
Plant Biotechnol J ; 18(6): 1444-1456, 2020 06.
Article in English | MEDLINE | ID: mdl-31799788

ABSTRACT

Coriander (Coriandrum sativum L. 2n = 2x = 22), a plant from the Apiaceae family, also called cilantro or Chinese parsley, is a globally important crop used as vegetable, spice, fragrance and traditional medicine. Here, we report a high-quality assembly and analysis of its genome sequence, anchored to 11 chromosomes, with total length of 2118.68 Mb and N50 scaffold length of 160.99 Mb. We found that two whole-genome duplication events, respectively, dated to ~45-52 and ~54-61 million years ago, were shared by the Apiaceae family after their split from lettuce. Unbalanced gene loss and expression are observed between duplicated copies produced by these two events. Gene retention, expression, metabolomics and comparative genomic analyses of terpene synthase (TPS) gene family, involved in terpenoid biosynthesis pathway contributing to coriander's special flavour, revealed that tandem duplication contributed to coriander TPS gene family expansion, especially compared to their carrot counterparts. Notably, a TPS gene highly expressed in all 4 tissues and 3 development stages studied is likely a major-effect gene encoding linalool synthase and myrcene synthase. The present genome sequencing, transcriptome, metabolome and comparative genomic efforts provide valuable insights into the genome evolution and spice trait biology of Apiaceae and other related plants, and facilitated further research into important gene functions and crop improvement.


Subject(s)
Coriandrum , Chromosome Mapping , Emotions , Genome, Plant , Plants , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL