Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 24(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37175799

ABSTRACT

Histone deacetylases (HDACs), known as histone acetylation erasers, function crucially in plant growth and development. Although there are abundant reports focusing on HDACs of Arabidopsis and illustrating their important roles, the knowledge of HDAC genes in Tartary buckwheat (Polygonales Polygonaceae Fagopyrum tataricum (L.) Gaertn) is still scarce. In the study, a total of 14 HDAC genes were identified and divided into three main groups: Reduced Potassium Dependency-3/His-52 tone Deacetylase 1 (RPD3/HDA1), Silent Information Regulator 2 (SIR2), and the plant-53 specific HD2. Domain and motif composition analysis showed there were conserved domains and motifs in members from the same subfamilies. The 14 FtHDACs were distributed asymmetrically on 7 chromosomes, with three segmental events and one tandem duplication event identified. The prediction of the cis-element in promoters suggested that FtHDACs probably acted in numerous biological processes including plant growth, development, and response to environmental signals. Furthermore, expression analysis based on RNA-seq data displayed that all FtHDAC genes were universally and distinctly expressed in diverse tissues and fruit development stages. In addition, we found divergent alterations in FtHDACs transcript abundance in response to different light conditions according to RNA-seq and RT-qPCR data, indicating that five FtHDACs might be involved in light response. Our findings could provide fundamental information for the HDAC gene family and supply several targets for future function analysis of FtHDACs related with light response of Tartary buckwheat.


Subject(s)
Fagopyrum , Fagopyrum/metabolism , Phylogeny , Histone Deacetylases/metabolism , Gene Expression Profiling , Genome, Plant , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Crit Rev Food Sci Nutr ; 63(5): 657-673, 2023.
Article in English | MEDLINE | ID: mdl-34278850

ABSTRACT

Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.


Subject(s)
Fagopyrum , Plants, Medicinal , Fagopyrum/chemistry , Flavonoids/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Glycosides
3.
Molecules ; 27(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056695

ABSTRACT

The purpose of this study was to investigate the major flavonoids content and bioactivities of Tartary buckwheat sprouts. The crude methanol extract (ME) of Tartary buckwheat sprouts was abundant in flavonoids, and six major flavonoids, including isoorientin, vitexin, isovitexin, rutin, quercetin, and kaemferol were successfully determined from the sprouts by the high-performance liquid chromatography (HPLC) method. Generally, the flavonoid content of buckwheat sprouts was in the order of rutin > quercetin > isovitexin > vitexin> isoorientin > kaemferol. The highest rutin content of the ME and sprout cultures was 89.81 mg/g and 31.50 mg/g, respectively. Antibacterial activity results indicated the ME displayed notable inhibitory activity against the five tested bacteria, and its minimum inhibitory concentration (MIC) values ranged from 0.8 mg/mL to 3.2 mg/mL. Among the six flavonoids, quercetin was the most active compound, which exhibited strong activity against all tested bacteria except for E. coli and S. epidermidis, with its MIC values ranging from 0.2 mg/mL to 0.4 mg/mL. For the antifungal activity assay, the ME of Tartary buckwheat sprouts and four flavonoids could significantly inhibit the spore germination of two pathogenic fungi, and their inhibitory efficiency was concentration dependent. Quercetin was the most active one, which significantly inhibited the spore germination of F. oxysporum f. sp. vasinfectum and F. oxysporum f. sp. cucumerinum, and its median effective inhibitory concentration (IC50) value was 42.36 and 32.85 µg/mL, respectively. The antioxidant activity results showed that quercetin, kaemferol, and rutin displayed excellent antioxidant activity in the DPPH radical scavenging test, and their IC50 value was calculated as 5.60, 16.23, and 27.95 µg/mL, respectively. This is the first report on the antimicrobial activity of the crude extract of Tartary buckwheat sprouts. These results indicated that the methanol extract of Tartary buckwheat sprouts could be used as a potential antimicrobial or antioxidant agent in the future.


Subject(s)
Fagopyrum
4.
Int J Biol Macromol ; 190: 487-498, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34508718

ABSTRACT

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor playing crucial roles in various biological process in plant. However, thorough research on NF-Y gene family of Tartary buckwheat (Fagopyrum tataricum) is little. In this study, 38 FtNF-Y genes (12 FtNF-YAs, 17 FtNF-YBs, and 9 FtNF-YCs) were identified and renamed on the basis of their subfamily and chromosomal location. Their gene structure, genomic mapping, motif composition, conserved domain, phylogenetic relationships, cis-acting elements and gene expression were investigated. Illustration of gene structures and conserved domains of FtNF-Ys revealed their functional conservation and specificity. Construction of phylogenetic trees of NF-Ys in Tartary buckwheat, Arabidopsis, tomato, rice and banana, allowed us to predict functional similarities among NF-Ys from different species. Gene expression analysis displayed that twenty-four FtNF-Ys were expressed in all the tissues and the transcript levels of them were different, suggesting their function varieties. Moreover, expression profiles of twenty FtNF-Ys along five different fruit development stages acquired by real-time quantitative PCR (RT-qPCR) demonstrated distinct abundance diversity at different stages, providing some clues of potential fruit development regulators. Our study could provide helpful reference information for further function characterization of FtNF-Ys and for the fruit quality enhancement of Tartary buckwheat.


Subject(s)
CCAAT-Binding Factor/genetics , Fagopyrum/genetics , Fruit/growth & development , Fruit/genetics , Genome, Plant , Multigene Family , Plant Proteins/genetics , Amino Acid Motifs , Amino Acid Sequence , CCAAT-Binding Factor/chemistry , Chromosomes, Plant/genetics , Conserved Sequence , Evolution, Molecular , Gene Duplication/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Organ Specificity/genetics , Phylogeny , Plant Proteins/chemistry , Promoter Regions, Genetic/genetics
5.
Molecules ; 25(16)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806502

ABSTRACT

The chemical components, as well as the antibacterial and antioxidant activities of the essential oil (EO) and crude extracts prepared from Rhodiola crenulata were investigated. The essential oil was separated by hydrodistillation, and gas chromatography-mass spectrometry (GC-MS) was used to identify its constituents. A total of twenty-seven compounds was identified from the EO, and its major components were 1-octanol (42.217%), geraniol (19.914%), and 6-methyl-5-hepten-2-ol (13.151%). Solvent extraction and fractionation were applied for preparing the ethanol extract (crude extract, CE), petroleum ether extract (PE), ethyl acetate extract (EE), n-butanol extract (BE), and water extract (WE). The CE, EE and BE were abundant in phenols and flavonoids, and EE had the highest total phenol and total flavonoid contents. Gallic acid, ethyl gallate, rosavin and herbacetin were identified in the EE. The antibacterial activity results showed that the EO exhibited moderate inhibitory activity to the typical clinic bacteria, and EE exhibited the strongest antibacterial activity among the five extracts. For the compounds, ethyl gallate showed the strongest inhibitory activity to the test bacteria, and its minimum inhibitory concentration (MIC) value and minimum bactericidal concentration (MBC) value for all the tested bacteria was 0.24 mg/mL and 0.48 mg/mL, respectively. The results of antioxidant activity showed that both CE and EE exhibited strong antioxidant activities in the DPPH radical scavenging and Fe2+ reducing power tests, however, EO showed relatively weaker antioxidant ability. Ethyl gallate and rosavin exhibited excellent activity in the DPPH radical scavenging assay, and their IC50 value was 5.3 µg/mL and 5.9 µg/mL, respectively. Rosavin showed better reduction power activity than the other three compounds. These results could provide more evidence for the traditional use of R. crenulata, and would be helpful for improving its application further.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Phytochemicals , Plant Extracts/chemistry , Plant Leaves/chemistry , Rhodiola/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology
6.
Int J Biol Macromol ; 137: 688-696, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31279882

ABSTRACT

The seed of Tartary buckwheat (Fagopyrum tataricum) is rich in nutrients and functional ingredients and is recommended as a healthy cereal food. The total proteins of Tartary buckwheat seed (TBS) were extracted and digested; then, the phosphopeptides and glycopeptides were separately enriched and identified by nano liquid chromatography/tandem mass spectrometry. A total of 2613 phosphorylation sites from 1670 phosphoproteins and 404 N-glycosylation sites from 285 N-glycoproteins were identified in TBS. Function and pathway analyses showed that TBS phosphoproteins were significantly enriched in transport, energy metabolism, amino acids biosynthesis/metabolism, and signaling and TBS N-glycoproteins were significantly enriched in modification regulation. The present study reports the first profiles of the phosphoproteome and N-glycoproteome of TBS and provides important post-translational modifications information on the proteins in TBS. The results of this study will aid the understanding of the underlying mechanism of the germination of TBS during cultivation and edible quality changes during storage and processing.


Subject(s)
Fagopyrum/metabolism , Glycoproteins/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Proteomics/methods , Seeds/metabolism , Amino Acid Sequence , Amino Acids/biosynthesis , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Energy Metabolism , Fagopyrum/cytology , Glycoproteins/chemistry , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Phosphoproteins/chemistry , Phosphorylation , Plant Proteins/chemistry , Protein Transport , Signal Transduction , Tandem Mass Spectrometry
7.
J Food Biochem ; 43(7): e12863, 2019 07.
Article in English | MEDLINE | ID: mdl-31353746

ABSTRACT

The whole seed of tartary buckwheat (Fagopyrum tataricum) is considered as a healthy and functional food, which is rich in kinds of flavonoids and with potential antioxidant effect. An in-depth analysis of tartary buckwheat seed (TBS) proteome was performed using a shotgun proteomics strategy. Total protein of TBS was extracted and digested, then the peptides were separated by offline two-dimensional liquid chromatography and identified by tandem mass spectrometry. Total of 3,363 high-confidence proteins were identified from 13,730 matched peptides, in which, 2,499 proteins were annotated by the Gene Ontology (GO) analysis with 1,720 involved in "biological process," 2,241 in "molecular function," and 693 in "cellular components." Based on the GO functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment results, buckwheat seed proteins were mostly enriched in metabolism of nucleic acid, respiration and energy metabolism, as well as synthesis and metabolism of protein. PRACTICAL APPLICATIONS: This study characterized the tartary buckwheat seed proteome on a scale of 3,000+ proteins and provide important information and clues for future research, especially in the mechanism of seed germination, nutrient composition changes, and metabolite production seed germination and material metabolism.


Subject(s)
Fagopyrum/chemistry , Proteome/analysis , Seeds/chemistry , Chromatography, Liquid , Plant Proteins/analysis , Tandem Mass Spectrometry
8.
Electron. j. biotechnol ; 39: 42-51, may. 2019. graf, tab
Article in English | LILACS | ID: biblio-1052010

ABSTRACT

BACKGROUND: Common buckwheat (Fagopyrum esculentum) is an important staple food crop in southwest China, where drought stress is one of the largest limiting factors that lead to decreased crop production. To reveal the molecular mechanism of common buckwheat in response to drought stress, we performed a comprehensive transcriptomics study to evaluate gene expression profiles of common buckwheat during PEG-mediated drought treatment. RESULTS: In total, 45 million clean reads were assembled into 53,404 unigenes with an average length of 749 bp and N50 length of 1296 bp. A total of 1329 differentially expressed genes (DEGs) were identified by comparing wellwatered and drought-treated plants, out of which 666 were upregulated and 663 were downregulated. Furthermore, we defined the functional characteristics of DEGs using GO and KEGG classifications. GO enrichment analysis showed that the DEGs were significantly overrepresented in four categories, namely, "oxidoreductase activity," "oxidation­reduction process," "xyloglucan:xyloglucosyl transferase activity," and "apoplast." Using KEGG pathway analysis, a large number of annotated genes were overrepresented in terms such as "plant hormone signal transduction," "phenylpropanoid biosynthesis," "photosynthesis," and "carbon metabolism." Conclusions: These results can be further exploited to investigate the molecular mechanism of common buckwheat in response to drought treatment and could supply with valuable molecular sources for abiotic-tolerant elite breeding programs in the future.


Subject(s)
Stress, Physiological/genetics , Fagopyrum/genetics , Transcription Factors , Transferases , Signal Transduction , Gene Expression , Sequence Analysis, RNA , Droughts , Chlorophyll Binding Proteins , Real-Time Polymerase Chain Reaction , Transcriptome
9.
Molecules ; 23(1)2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29361741

ABSTRACT

The purpose of this study was to investigate the chemical composition and biological activity of the volatile oils (VOs) from the flowers of three buckwheat species, Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. The VOs were obtained from the fresh buckwheat flowers by hydrodistillation, and were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS). Nonanoic acid (7.58%), (E)-3-hexen-1-ol (6.52%), and benzothiazole (5.08%) were the major constituents among the 28 identified components which accounted for 92.89% of the total oil of F. esculentum. 2-Pentadecanone (18.61%), eugenol (17.18%), 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (13.19%), and (E,E)-farnesylacetone (7.15%) were the major compounds among the 14 identified components which accounted for 88.48% of the total oil of F. tataricum. Eugenol (12.22%), (E)-3-hexen-1-yl acetate (8.03%), linalool oxide (7.47%), 1-hexanol (7.07%), and benzothiazole (6.72%) were the main compounds of the 20 identified components which accounted for 90.23% of the total oil of F. cymosum. The three VOs were screened to have broad spectrum antibacterial activity with minimum inhibitory concentration (MIC) values ranged from 100.0 µg/mL to 800.0 µg/mL against the tested bacteria, and their median inhibitory concentration (IC50) values were from 68.32 µg/mL to 452.32 µg/mL. Xanthomonas vesicatoria was the most sensitive bacterium. Moreover, the flower VOs of F. esculentum, F. tataricum and F. cymosum also exhibited noteworthy antioxidant capacity with the IC50 value of 354.15 µg/mL, 210.63 µg/mL, and 264.92 µg/mL for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, and the value of 242.06 µg/mL, 184.13 µg/mL, and 206.11 µg/mL respectively for the ß-carotene-linoleic bleaching test. These results suggested the volatile oils of buckwheat flowers could be potential resource of natural antimicrobial and antioxidant agents.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Fagopyrum/chemistry , Flowers/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Microbial Sensitivity Tests , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/pharmacology
10.
Molecules ; 21(12)2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27897983

ABSTRACT

The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS), sodium hydroxide-extracted mycelia polysaccharide (SPS), hydrochloric-extracted mycelia polysaccharide (APS), and exo-polysaccharide (EPS) obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS) species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts), 41.52 mg/(100 sprouts), 35.88 mg/(100 sprouts), and 32.95 mg/(100 sprouts), respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts). Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.


Subject(s)
Fagopyrum/chemistry , Flavonoids/metabolism , Fusarium/chemistry , Plant Shoots/chemistry , Polysaccharides/pharmacology , Fagopyrum/metabolism , Plant Shoots/metabolism
11.
Pharmacogn Mag ; 10(39): 234-40, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25210309

ABSTRACT

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum), an excellent edible and medicinal crop, has been widely used as a daily diet and traditional medicine for a long time. The major functional components of Fagopyrum tataricum have been demonstrated to be flavonoids (i.e. rutin and quercetin), which had notable andioxidant, antidiabetic, hypocholesterolemic and antitumor activities. Hairy root culture is a convenient and efficient plant tissue culture system for large scale production of bioactive metabolites. OBJECTIVE: To enhance the functional flavonoids production in hairy root culture of F. tataricum. MATERIALS AND METHODS: The elicitation treatment in combination with medium renewal strategy was applied for efficient promoting flavonoids production in F. tataricum hairy root cultures. RESULTS: The exogenous yeast polysaccharide (YPS) elicitor notably stimulated the functional metabolites production in F. tataricum hairy root cultures, and the stimulation effect was concentration-dependent. Combination with the YPS elicitation (200 mg/L) and medium renewal process, the maximal flavonoids yield was enhanced to 47.13 mg/L, about 3.2-fold in comparison with the control culture of 14.88 mg/L. Moreover, this research also revealed the accumulation of these bioactive metabolites resulted from the stimulation of the phenylpropanoid pathway by YPS treatment. These results indicated that the F. tataricum hairy root culture could be an effective system for rutin and quercetin production.

12.
Prep Biochem Biotechnol ; 44(8): 782-94, 2014.
Article in English | MEDLINE | ID: mdl-24279735

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum) is a potentially important source of rutin, a natural bioactive flavonoid with antihyperglycemic, antioxidative, antihypertensive, and anti-inflammatory properties. This study examines the effects of endophytic fungi on rutin production in the hairy root cultures of F. tataricum. Without obvious changes in the appearance of the hairy roots, the exogenous fungal mycelia elicitors efficiently stimulated the hairy root growth and rutin biosynthesis, and the stimulation effect was mainly dependent on the mycelia elicitor species, as well as its treatment dose. Two endophytic fungal isolates Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened as promising candidates for promoting F. tataricum hairy root growth and rutin production. With application of polysaccharide (PS) of endophyte Fat9 (200 mg/L), and PS of endophyte Fat15 (100 mg/L) to the hairy root cultures on day 25, the rutin yield was increased to 45.9 mg/L and 47.2 mg/L, respectively. That was about 3.1- to 3.2-fold in comparison with the control level of 14.6 mg/L. Moreover, the present study revealed that the accumulation of rutin resulted from the stimulation of the phenylpropanoid pathway by mycelia PS treatments. This may be an efficient strategy for enhancing rutin production in F. tataricum hairy root culture provided with its endophytic mycelia elicitors.


Subject(s)
Alternaria/physiology , Fagopyrum/microbiology , Fagopyrum/physiology , Fusarium/physiology , Plant Roots/microbiology , Plant Roots/physiology , Rutin/metabolism , Alternaria/isolation & purification , Endophytes/isolation & purification , Endophytes/physiology , Fusarium/isolation & purification , Mycelium/isolation & purification , Mycelium/physiology , Polysaccharides/metabolism
13.
J Agric Food Chem ; 61(4): 854-7, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23305287

ABSTRACT

A simple and rapid method for determining emodin, an active factor presented in tartary buckwheat (Fagopyrum tataricum), by high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) has been developed. Emodin was separated from an extract of buckwheat on a Kromasil-ODS C(18) (250 mm × 4.6 mm × 5 µm) column. The separation is achieved within 15 min on the ODS column. Emodin can be quantified using an external standard method detecting at 436 nm. Good linearity is obtained with a correlation coefficient exceeding 0.9992. The limit of detection and the limit of quantification are 5.7 and 19 µg/L, respectively. This method shows good reproducibility for the quantification of the emodin with a relative standard deviation value of 4.3%. Under optimized extraction conditions, the recovery of emodin was calculated as >90%. The validated method is successfully applied to quantify the emodin in tartary buckwheat and its products.


Subject(s)
Chromatography, High Pressure Liquid/methods , Emodin/analysis , Fagopyrum/chemistry , Plant Extracts/chemistry , Reproducibility of Results , Seeds/chemistry
14.
Molecules ; 17(10): 11335-45, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23011276

ABSTRACT

The purpose of this study was to investigate the effects of yeast polysaccharide (YPS) on growth and flavonoid accumulation in sprout cultures of Fagopyrum tataricum (tartary buckwheat). Without obvious change in the appearance of the sprouts, the exogenous YPS notably stimulated the production of functional metabolites in F. tataricum sprouts, and the stimulation effect was concentration-dependent. With 400 mg/L of YPS applied to the sprout cultures on day 6, the total rutin and quercentin content was effectively increased to 42.8 mg/gdw, or about 1.4-fold in comparison with the control of 31.2 mg/gdw. Feeding with 800 mg/L of YPS on day 9, the sprouts biomass was increased by about 8% compared to the control culture (0.99 gdw/100 sprouts versus 0.92 gdw/100 sprouts). Moreover, the present study revealed that the accumulation of these bioactive metabolites resulted from the stimulation of the phenylpropanoid pathway by YPS treatment. It could be an effective strategy for improving the functional quality of the F. tataricum sprouts provided with YPS.


Subject(s)
Fagopyrum/drug effects , Flavonoids/metabolism , Fungal Polysaccharides/pharmacology , Yeasts/chemistry , Biomass , Dose-Response Relationship, Drug , Fagopyrum/growth & development , Fagopyrum/metabolism , Flavonoids/chemistry , Kinesis
15.
World J Microbiol Biotechnol ; 28(3): 835-40, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22805802

ABSTRACT

High-speed counter-current chromatography (HSCCC) was applied for preparative separation of helvolic acid from the crude extract of the endophytic fungus Pichia guilliermondii Ppf9, associated with the medicinal plant Paris polyphylla var. yunnanensis for the first time. The two-phase solvent system consisted of n-hexane-ethyl acetate-methanol-water (4.5:4.5:5.0:5.0, v/v) appending with phosphoric acid (0.2%, v/v) was employed. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature of the apparatus were 800 rpm, 3 ml min(-1) and 25°C, respectively. About 6.8 mg of helvolic acid was successfully obtained from 450 mg of the crude extract by HSCCC within 4 h separation procedure, and its purity reached to 93.2% according to the HPLC analysis. The product was further characterized by MS, (1)H-NMR and (13)C-NMR spectra.


Subject(s)
Chromatography/methods , Endophytes/chemistry , Fusidic Acid/analogs & derivatives , Pichia/chemistry , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Fusidic Acid/isolation & purification , Magnetic Resonance Spectroscopy , Magnoliopsida/microbiology , Molecular Sequence Data , Pichia/classification , Pichia/isolation & purification , Sequence Analysis, DNA , Solvents/chemistry
16.
Nat Prod Commun ; 6(11): 1749-53, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22224303

ABSTRACT

The essential oil obtained by hydro-distillation from the flowers of Halimondendron halodendron (Leguminosae) was analyzed for its chemical composition by gas chromatography-mass spectrometry (GC-MS). Undecane (16.4%), dodecane (15.3%), tridecane (12.5%), decane (8.2%), 6,10,14-trimethyl-pentadecan-2-one (6.3%), methyl palmitate (6.0%), methyl linolenate (4.1%) and ethylcyclohexane (4.1%) were the major compounds of the thirty-five identified components of the oil. The essential oil was shown to have a broad spectrum of antimicrobial activity with MIC values ranging from 100 to 250 microg/mL, and IC50 values from 40.4 to 193.8 microg/mL. The oil also showed strong antioxidant activity, with an especially high metal chelating capacity of ferrous ions with an IC50 value of 7.4 microg/mL on ferrozine-Fe2+ complex formation.


Subject(s)
Anti-Infective Agents/analysis , Antioxidants/analysis , Fabaceae/chemistry , Oils, Volatile/chemistry , Flowers/chemistry , Microbial Sensitivity Tests
17.
Nat Prod Commun ; 6(11): 1759-62, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22224305

ABSTRACT

The volatile oil, obtained by hydro-distillation from Fusarium tricinctum, the endophytic fungus isolated from Paris polyphylla var. yunnanensis, was analyzed by gas chromatography-mass spectrometry (GC-MS). trans-1,2,3,3a,4,7a-Hexahydro-7a-methyl-5H-inden-5-one (73.1%), 2-methylene-4,8,8-trimethyl-4-vinyl bicyclo [5.2.0] nonane (12.0%), and 2,6-dimethyl-6-(4-methyl-3-pentenyl) bicyclo [3.1.1] hept-2-ene (4.5%) were the major compounds of the 15 identified components accounting for 95.4% of the volatile oil. The antimicrobial activity of the volatile oil was assayed against eight bacteria and two fungi. The minimum inhibitory concentration (MIC) values of the volatile oil against the test bacteria ranged from 25 to 45 microg/mL. The MIC values against the fungi Candida albicans and Magnaporthe oryzae were 100 and 225 microg/mL, respectively. The mean inhibitory concentration (IC50) values of the volatile oil against the test bacteria ranged from 17.8 to 31.6 microg/mL, and those of the volatile oil against C. albicans and M. oryzae were 84.3 and 204.3 microg/mL, respectively.


Subject(s)
Anti-Infective Agents/analysis , Fusarium/chemistry , Magnoliopsida/microbiology , Oils, Volatile/chemistry , Microbial Sensitivity Tests
18.
Molecules ; 15(12): 9288-97, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21160453

ABSTRACT

Three antimicrobial sphingolipids were separated by bioassay-guided isolation from the chloroform fraction of the crude methanol extract of cucumber (Cucumis sativus L.) stems and identified as (2S,3S,4R,10E)-2-[(2'R)-2-hydroxytetra-cosanoylamino]-1,3,4-octadecanetriol-10-ene (1), 1-O-ß-D-glucopyranosyl(2S,3S,4R,10E)-2-[(2'R)-2-hydroxy-tetracosanoylamino]-1,3,4-octadecanetriol-10-ene (2) and soya-cerebroside I (3) by their physicochemical properties and spectroscopic analysis. They were evaluated to show antifungal and antibacterial activity on test microorganisms including four fungal and three bacterial species. Among them, compound 1, a relatively low polarity aglycone,  exhibited stronger antimicrobial activity than its corresponding glycoside 2. The results indicated that sphingolipids could be the main antimicrobial compounds in the crude methanol extract of cucumber stems.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Bacteria/growth & development , Cucumis sativus/chemistry , Fungi/growth & development , Plant Stems/chemistry , Sphingolipids , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Methanol/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Sphingolipids/chemistry , Sphingolipids/isolation & purification , Sphingolipids/pharmacology
19.
Molecules ; 15(11): 7961-70, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21060302

ABSTRACT

Three steroids and one nordammarane triterpenoid were isolated for the first time from the endophytic fungus Pichia guilliermondii Ppf9 derived from the medicinal plant Paris polyphylla var. yunnanensis. By means of physicochemical and spectrometric analysis, they were identified as ergosta-5,7,22-trienol (1), 5α,8α-epidioxyergosta-6,22-dien-3ß-ol (2), ergosta-7,22-dien-3ß,5α,6ß-triol (3), and helvolic acid (4). Both micro-dilution-colorimetric and spore germination assays were employed to evaluate their antimicrobial activity. Among them, helvolic acid (4) exhibited the strongest antibacterial activity against all test bacteria, with MIC values ranging from 1.56 µg/mL to 50 µg/mL, and IC(50) values from 0.98 µg/mL to 33.19 µg/mL. It also showed strong inhibitory activity on the spore germination of Magnaporthe oryzae with an IC(50) value of 7.20 µg/mL. Among the three steroids, 5α,8α-epidioxyergosta-6,22-dien-3ß-ol (2) exhibited relatively strong antimicrobial activity. The results suggest that the endophytic fungus Pichia guillermondii Ppf9 could be a candidate for producing helvolic acid, and the metabolites from this fungus could be potentially developed as antimicrobial agents in the future.


Subject(s)
Anti-Infective Agents/pharmacology , Magnoliopsida/microbiology , Pichia/chemistry , Plants, Medicinal/microbiology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Ergosterol/analogs & derivatives , Ergosterol/chemistry , Ergosterol/pharmacology , Fusidic Acid/analogs & derivatives , Fusidic Acid/chemistry , Fusidic Acid/pharmacology , Magnaporthe/drug effects , Microbial Sensitivity Tests , Molecular Structure , Spores, Fungal/drug effects , Steroids/chemistry , Steroids/pharmacology
20.
Molecules ; 15(9): 5998-6007, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20877205

ABSTRACT

Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-ß-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-ß-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.


Subject(s)
Chromatography, High Pressure Liquid/methods , Countercurrent Distribution/methods , Fabaceae/chemistry , Phenols/isolation & purification , Acetates , Antioxidants/isolation & purification , Disaccharides , Molecular Structure , Plant Extracts , Quercetin
SELECTION OF CITATIONS
SEARCH DETAIL