Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 189: 81-9, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27196297

ABSTRACT

BACKGROUND: Danggui Buxue Tang (DBT), a Chinese herbal decoction containing Astragali Radix (AR; roots of Astragalus memebranaceus (Fisch.) Bunge var. mongholicus (Bunge) Hsiao) and Angelicae Sinensis Radix (ASR; roots of Angelica sinensis Oliv.) at a weight ratio of 5:1, is used to improve menopausal syndromes in women. Several lines of evidence indicate that DBT has strong estrogenic property; however, the action mechanism of this herbal decoction is not known. Calycosin, a major flavonoid in AR, shares similar structure with ß-estradiol, and thus which is hypothesized to be the key compound of DBT in responsible for such estrogenic properties. AIMS: We aimed to determine the role of calycosin in DBT in terms of its estrogenic functions by the creation of calycosin-depleted DBT (DBTΔcal) and calycosin-added DBT (DBT+cal) herbal extracts. METHODS: The signalings triggered by DBT∆cal, DBT+cal, and parental DBT were compared in cultured MCF-7 cells by determining: (i) the activation of estrogen responsive element; (ii) the phosphorylation of estrogen receptor α (ERα); and (iii) the phosphorylation of Erk1/2. The DBT-induced responses were in dose- and/or time-dependent manners. RESULTS: The estrogenic signals triggered by DBT were markedly reduced in DBTΔcal, and in contrast the addition of calycosin in DBT, i.e. DBT+cal, enhanced the responses by 2-5 folds; however, calycosin alone did not show such properties. In parallel, the DBT-induced responses could be significantly blocked by inhibitors for estrogen receptor and mitogen activated protein kinases. CONCLUSION: Thus, we hypothesize that calycosin is an indispensable chemical in DBT, and which plays a linker in orchestrating multi-components of DBT as to achieve the maximal estrogenic functions. These discoveries should be invaluable in drug development and in investigating the modernization of traditional Chinese medicine from a new perspective.


Subject(s)
Breast Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Estrogens/pharmacology , Isoflavones/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Dose-Response Relationship, Drug , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Phytotherapy , Plants, Medicinal , Response Elements/drug effects , Signal Transduction/drug effects , Time Factors , Transfection
2.
Phytother Res ; 19(8): 684-8, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16177971

ABSTRACT

The root of Panax notoginseng (Radix Notoginseng, Sanqi) is a commonly used traditional Chinese medicine, which is mainly cultivated in Wenshan of Yunnan China. The identified active constituents in Radix Notoginseng include saponin, ssavonoid and polysaccharide; however, the levels of these active constituents vary greatly with different extraction processes. This variation causes a serious problem in standardizing the herbal extract. By using HPLC and spectrophotometry, the contents of notoginsenoside R(1), ginsenoside R(g1), R(b1), R(d), and ssavonoids were determined in the extracts of Radix Notoginseng that were derived from different processes of extraction according to an orthogonal array experimental design having three variable parameters: nature of extraction solvent, extraction volume and extraction time. The nature of extraction solvent and extraction volume were two distinct factors in obtaining those active constituents, while the time of extraction was a subordinate factor. The optimized condition of extraction therefore is considered to be 20 volumes of water and extracted for 24 h. In good agreement with the amount of active constituents, the activity of anti-platelet aggregation was found to be the highest in the extract that contained a better yield of the active constituents. The current results provide an optimized extraction method for the quality control of Radix Notoginseng.


Subject(s)
Chemical Fractionation/methods , Panax/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Animals , Ginsenosides/chemistry , Ginsenosides/isolation & purification , Ginsenosides/pharmacology , Plant Extracts/pharmacology , Platelet Aggregation/drug effects , Quality Control , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology , Rabbits
3.
Am J Chin Med ; 31(6): 919-26, 2003.
Article in English | MEDLINE | ID: mdl-14992544

ABSTRACT

Radix Adenophorae (Shashen), a traditional Chinese medicine commonly used as an antitussive and expectorant, is derived from roots of Adenophora stricta Miq. and Adenophora tetraphylla (Thunb.) Fisch. Twelve species and varieties of Adenophora and Glehnia, however, could act as substitutes or adulterants of Radix Adenophorae on the commercial markets in South East Asia, and roots of Adenophora hunanensis Nannf. and Glihnia littoralis F. Schmidt ex Miq. are the most common examples. The authentic identification of dried roots of A. stricta and A. tetraphylla, however, is difficult on the basis of appearance and morphology. A molecular genetic approach was developed here to identify the species of Radix Adenophorae. The 5S-rRNA spacer domains (approximately 250 bp) were amplified by the polymerase chain reaction (PCR) from genomic DNAs isolated from A. stricta, A. tetraphylla, A. hunanensis and G. littoralis, and subsequently, the nucleotide sequences were determined. Diversity in DNA sequence and restriction enzyme mapping among various species were found in their 5S-rRNA spacer domains, which could serve as markers for authentic identification of Radix Adenophorae.


Subject(s)
Campanulaceae/genetics , Drugs, Chinese Herbal/standards , Plant Roots/genetics , RNA, Ribosomal, 5S/genetics , Antitussive Agents/standards , Base Sequence , Campanulaceae/classification , Drug Industry/standards , Expectorants/standards , Genetic Markers , Molecular Sequence Data , RNA, Plant/analysis
SELECTION OF CITATIONS
SEARCH DETAIL