Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Biol Trace Elem Res ; 201(8): 3804-3811, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36348175

ABSTRACT

The purpose of this study is to investigate the effects of molybdenosis on antioxidant capacity in endangered Przewalski's gazelles (Procapra przewalskii) in the animal rescue center in the Qinghai Lake National Nature Reserve in Northwestern China. Ten P. przewalskii in molybdenosis were selected and treated orally with copper sulfate (CuSO4) at a dose of 20 g/animal/5 days for 20 days. Ten healthy P. przewalskii were also selected and allocated to healthy pastures for 20 days. Samples of soil, forage, and animal tissue were collected. The values of mineral and hematological parameters were measured. Results showed levels of molybdenum (Mo) in soil and forage were significantly higher than those in healthy ranches (P < 0.01). The Mo content of blood and hair in gazelles from the rescue center was also significantly higher than those in the healthy ranches animals (P < 0.01). The copper (Cu) contents in blood and hair from the rescue center were significantly lower than those from the healthy pasture (P < 0.01). Hemoglobin (Hb) and red cell volume (PCV) in the gazelles from the animal rescue center were significantly lower than those from animals in healthy ranches (P < 0.01). Aspartate aminotransferase (AST), lactate dehydrogenase (LDH), phosphocreatine kinase (CPK), and alkaline phosphatase (ALP) were significantly higher than those from gazelles in healthy ranches (P < 0.01). The antioxidant capacity in gazelles from the animal rescue center was significantly lower than that of gazelles in healthy ranches. Supplementing CuSO4 significantly decreased the Mo content of blood and cured molybdenosis in gazelles. In summary, the Mo content of soil and forage was very excessive for gazelles in the animal rescue center. The antioxidant capacity of P. przewalskii has been seriously affected by molybdenosis.


Subject(s)
Antelopes , Animals , Antioxidants , Lakes , China , Molybdenum , Soil
2.
BMC Genomics ; 23(1): 743, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348322

ABSTRACT

BACKGROUND: The bZIP gene family has important roles in various biological processes, including development and stress responses. However, little information about this gene family is available for Wheel Wingnut (Cyclocarya paliurus).  RESULTS: In this study, we identified 58 bZIP genes in the C. paliurus genome and analyzed phylogenetic relationships, chromosomal locations, gene structure, collinearity, and gene expression profiles. The 58 bZIP genes could be divided into 11 groups and were unevenly distributed among 16 C. paliurus chromosomes. An analysis of cis-regulatory elements indicated that bZIP promoters were associated with phytohormones and stress responses. The expression patterns of bZIP genes in leaves differed among developmental stages. In addition, several bZIP members were differentially expressed under drought stress. These expression patterns were verified by RT-qPCR. CONCLUSIONS: Our results provide insights into the evolutionary history of the bZIP gene family in C. paliurus and the function of these genes during leaf development and in the response to drought stress. In addition to basic genomic information, our results provide a theoretical basis for further studies aimed at improving growth and stress resistance in C. paliurus, an important medicinal plant.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Phylogeny , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Profiling
3.
Front Plant Sci ; 13: 932855, 2022.
Article in English | MEDLINE | ID: mdl-36325569

ABSTRACT

The root and rhizome of Salvia miltiorrhiza (Danshen in short) is a well-known herbal medicine used to treat cardiovascular diseases in the world. In China, the roots and rhizomes of several other Salvia species (Non-Danshen in short) are also used as this medicine in traditional folk medicine by local herbalists. Differences have been reported in these medicines originating from different sources, and their quality variation needs to be clearly investigated for effective clinical application. This study presented a comprehensive quality evaluation and monitoring for Danshen from 27 sampling sites and Non-Danshen from other 5 Salvia species based on a high-performance liquid chromatography-diode array detector (HPLC-DAD) and near-infrared (NIR), with the combination of chemometric models. The results showed that cryptotanshinone, tanshinone IIA, tanshinone I, salvianolic acid B, salvianic acid A sodium, dihydrotanshinone I, and rosmarinic acid in these medicines from different sources exhibited great variations. Referring to the standards in Chinese Pharmacopoeia (CP), European Pharmacopeia (EP), and United States Pharmacopeia (USP), Non-Danshen from S. brachyloma, S. castanea, S. trijuga, S. bowleyana, and S. przewalskii were assessed as unqualified, and Danshen in the Shandong Province had the best quality due to the high qualified rate. Based on random forest (RF) and partial least-squares discriminant analysis (PLS-DA), NIR technique could successfully monitor the quality of these medicines by discriminating the species and regions with the accuracies of 100.00 and 99.60%, respectively. Additionally, modified partial least-squares regression (MPLSR) models were successfully constructed to investigate the feasibility of NIR fingerprints for the prediction of the quality indicators in these medicines. The optimized models obtained the best results for the total of tanshinone IIA, tanshinone I, and cryptotanshinone (TTC), tanshinone IIA, and salvianolic acid B, with the relative prediction deviation (RPD) of 4.08, 3.92, and 2.46, respectively. In summary, this study demonstrated that HPLC-DAD and NIR techniques can complement each other and could be simultaneously applied for evaluating and monitoring the quality of Danshen medicines.

4.
Article in English | MEDLINE | ID: mdl-36276867

ABSTRACT

Colorectal cancer (CRC) is a frequent malignancy around the globe. Circular RNAs (circRNAs) are implicated in CRC development. Nevertheless, the regulatory mechanisms and biological functions regarding circRNAs in CRC progression are largely unclear. The present investigation employed next-generation sequencing (NGS) to study the abnormal circRNA expression in CRC tissues. The regulatory mechanism and targets were then analyzed by bioinformatics, luciferase reporter analysis, CCK8, colony formation, and Transwell migration. In vivo metastasis and tumorigenesis assays were conducted to elucidate circ-PITHD1 roles regarding CRC. The data showed that circ-PITHD1 expression increased in a CRC cell line and tissues, which indicated that circ-PITHD1 functioned in CRC progression. circ-PITHD1 downregulation inhibited CRC invasion and proliferation in the experiments. Luciferase reporter results confirmed that both miR-590-5p and hexokinase 2 (HK2) were circ-PITHD1 downstream targets. HK2 overexpression or miR-590-5p suppression reversed CRC cell proliferation and invasion after silencing of circ-PITHD1 by regulation of glycolysis. Taken together, this investigation discovered that circ-PITHD1 downregulation suppressed CRC progression by inhibiting glycolysis via the miR-590-5p/HK2 axis.

5.
Lasers Med Sci ; 37(9): 3509-3516, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066778

ABSTRACT

Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.


Subject(s)
Low-Level Light Therapy , Mesenchymal Stem Cells , Osteogenesis/genetics , Osteogenesis/radiation effects , Bone Marrow Cells , Mesenchymal Stem Cells/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured
6.
Biotechnol Bioeng ; 119(11): 3297-3310, 2022 11.
Article in English | MEDLINE | ID: mdl-35923072

ABSTRACT

Silicate-substituted calcium phosphate (Si-CaP) ceramics, alternative materials for autogenous bone grafting, exhibit excellent osteoinductivity, osteoconductivity, biocompatibility, and biodegradability; thus, they have been widely used for treating bone defects. However, the limited control over the spatial structure and weak mechanical properties of conventional Si-CaP ceramics hinder their wide application. Here, we used digital light processing (DLP) printing technology to fabricate a novel porous 3D printed Si-CaP scaffold to enhance the scaffold properties. Scanning electron microscopy, compression tests, and computational fluid dynamics simulations of the 3D printed Si-CaP scaffolds revealed a uniform spatial structure, appropriate mechanical properties, and effective interior permeability. Furthermore, compared to Si-CaP groups, 3D printed Si-CaP groups exhibited sustained release of silicon (Si), calcium (Ca), and phosphorus (P) ions. Furthermore, 3D printed Si-CaP groups had more comprehensive and persistent osteogenic effects due to increased osteogenic factor expression and calcium deposition. Our results show that the 3D printed Si-CaP scaffold successfully improved bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, and osteogenic differentiation and possessed a distinct apatite mineralization ability. Overall, with the help of DLP printing technology, Si-CaP ceramic materials facilitate the fabrication of ideal bone tissue engineering scaffolds with essential elements, providing a promising approach for bone regeneration.


Subject(s)
Osteogenesis , Tissue Engineering , Apatites , Bone Regeneration , Calcium , Calcium Phosphates/chemistry , Cell Proliferation , Delayed-Action Preparations , Phosphorus , Porosity , Printing, Three-Dimensional , Silicates/chemistry , Silicon , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Huan Jing Ke Xue ; 43(6): 3058-3065, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686775

ABSTRACT

To reveal the characteristics of organic phosphorus release from lake sediments and its potential impact on water quality, six lake sediments from Yunnan Plateau and the middle and lower reaches of the Yangtze River in China were selected. We studied the differences in the kinetics of dissolved organic phosphorus (DOP) and dissolved inorganic phosphorus (SRP) release from sediments. The effects of organic phosphorus morphology and dissolved organic matter (DOM) characteristics on sediment phosphorus release were investigated, and the water quality risks of sediment DOP release were discussed. The results showed that:① the release kinetics of sediment DOP and SRP were similar; both followed the second-order kinetic model, starting with a rapid release phase, followed by a slow release, and the release curve gradually leveled off and reached the maximum release. ② The release of organic phosphorus was related to organophosphorus morphology and organic matter. Active organic phosphorus (LOP) and medium active organic phosphorus (MLOP) were the DOP forms mainly released into the overlying water during the rapid release phase. The proportion of LOP and MLOP to total organic phosphorus (DTP) decreased in the late release stage, whereas the proportion of non-active organic phosphorus (NLOP) increased; further, the degree of humification and aromaticity of organic matter gradually increased with phosphorus release, and its activity decreased, resulting in a slower release rate at the later stage. ③ Compared with that of SRP, the risk of DOP release was higher, accounting for 47%-77% of the total amount of DTP. It was also found that the higher the nutrient level of the lake, the greater the release of DOP and the higher the water quality risk. Therefore, not only the release of inorganic phosphorus but also that of organic phosphorus should be of concern in the process of phosphorus release from lake sediments to prevent the underestimation of phosphorus release and water quality risk.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Geologic Sediments , Kinetics , Lakes , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Quality
8.
Biol Trace Elem Res ; 200(12): 5081-5090, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35020160

ABSTRACT

To investigate the effects of nano-selenium (nano-Se) and Macleaya cordata extracts (MCE) on immune function and oxidative damage of sows and intrauterine growth retardation (IUGR) piglets exposed to heat stress (HS) in large-scale farms, a 2 × 2 factorial design was adopted in this test, and the two factors were nano-Se (0, 0.50 mg/kg) and MCE (0, 500 mg/kg). A total of 80 sows ([Landrace × Yorkshire] × Duroc, parity 2) were used in a 25-day trial from day 90 of gestation to delivery with 20 replications per group and 1 sow per replication. The dietary treatments of sows were as follows: (1) CON group, basic diet (0.30 mg/kg added Se, sodium selenite); (2) Nano-Se group, basic diet (0.00 mg/kg added Se) + 0.50 mg/kg added nano-Se; (3) MCE group, basic diet (0.00 mg/kg added Se) + 500 mg/kg added MCE; and (4) Combined group, basic diet (0.00 mg/kg added Se) + 0.50 mg/kg added nano-Se and 500 mg/kg added MCE. The activities of serum SOD, CAT, and GSH-Px of sows and IUGR piglets were significantly increased in MCE group and combined group, and the MDA content was extremely decreased. There were extreme differences in serum IgG level of sows and IUGR piglets, colostrum, and serum IgM level of IUGR piglets in MCE group and combined group compared with CON group. Maternal combined diets increased greatly the levels of serum IL-10 and IFN-γ of sows and IUGR piglets, and decreased extremely the contents of serum IL-1ß and TNF-α. MCE alone or combination with nano-Se in sow diets decreased greatly mRNA level of Hsp70 and increased mRNA level of Hsp27 in sows and IUGR piglets. In conclusion, nano-Se and/or MCE can be added to sow diets for the amelioration of HS-induced oxidative damage through improving immune function.


Subject(s)
Heat Stress Disorders , Selenium , Animals , Female , Pregnancy , Animal Feed/analysis , Colostrum , Diet/veterinary , Dietary Supplements , Fetal Growth Retardation/drug therapy , Heat Stress Disorders/drug therapy , Heat Stress Disorders/veterinary , Heat-Shock Response , HSP27 Heat-Shock Proteins/pharmacology , Immunity , Immunoglobulin G , Immunoglobulin M , Interleukin-10 , Lactation , Milk , Oxidative Stress , Parity , RNA, Messenger , Selenium/pharmacology , Sodium Selenite/pharmacology , Superoxide Dismutase , Swine , Tumor Necrosis Factor-alpha
9.
Front Pharmacol ; 13: 1059360, 2022.
Article in English | MEDLINE | ID: mdl-36712689

ABSTRACT

Initially described as an ancient and highly conserved catabolic biofunction, autophagy plays a significant role in disease pathogenesis and progression. As the bioactive ingredient of Salvia miltiorrhiza, tanshinone has recently shown profound effects in alleviating and treating various diseases by regulating autophagy. However, compared to the remarkable achievements in the known pharmacological effects of this traditional Chinese medicine, there is a lack of a concise and comprehensive review deciphering the mechanism by which tanshinone regulates autophagy for medicinal research. In this context, we concisely review the advances of tanshinone in regulating autophagy for medicinal research, including human cancer, the nervous system, and cardiovascular diseases. The pharmacological effects of tanshinone targeting autophagy involve the regulation of autophagy-related proteins, such as Beclin-1, LC3-II, P62, ULK1, Bax, ATG3, ATG5, ATG7, ATG9, and ATG12; the regulation of the PI3K/Akt/mTOR, MEK/ERK/mTOR, Beclin-1-related, and AMPK-related signaling pathways; the accumulation of reactive oxygen species (ROS); and the activation of AMPK. Notably, we found that tanshinone played a dual role in human cancers in an autophagic manner, which may provide a new avenue for potential clinical application. In brief, these findings on autophagic tanshinone and its derivatives provide a new clue for expediting medicinal research related to tanshinone compounds and autophagy.

10.
Biol Trace Elem Res ; 200(6): 2727-2733, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34396459

ABSTRACT

In recent decades, the groundwater contaminated by mineral development and metal smelting has seriously polluted natural grasslands, resulting in heavy metal residues in soils and forages exceeding the standard, especially copper (Cu) and cadmium (Cd). After animals intake contaminated forages, heavy metals may accumulate in animal tissues and threaten human health through the food chain. Previous studies found that molybdenum (Mo) fertilizer from ammonium molybdate or potassium molybdate could alleviate the decrease of antioxidant capacity caused by heavy metal poisoning, but the application of nano-Mo fertilizer in sheep is still lacking. To investigate the effects of nano-Mo fertilizer on Cu metabolism of grazing Chinese Merino sheep (Junken Type) on natural pastures under Cu and Cd stress, fertilizing experiment was carried out in the Bayanbulak Grassland in the northwest of Xinjiang Uygur Autonomous Region, China. A total of 24 hm2 fenced grassland contaminated by heavy metals was randomly divided into four groups (3 replications/group and 2 hm2/replication). The experimental groups were applied 0 g Mo, 100 g Mo, 200 g Mo, and 300 g Mo per hectare for the control group, group I, group II, and group III, respectively, through foliar spraying fertilization. A total of 72 Chinese Merino sheep (1 year old, 43.8 ± 2.3 kg) grazing on polluted natural grasslands, with 18 sheep per group, were randomly assigned to the experimental pastures for 30 days. The results showed that the Mo content in soil in group II and group III nwas higher than that in the control group (P < 0.05); the Cd content in soil in group II and group III was lower than that in the control group (P < 0.05), and the Cu content in soil in fertilized pastures was lower than that in the control group (P < 0.05). The Mo content in herbage in fertilized pastures was higher than that in the control group (P < 0.05), and the content of Cu in herbage in fertilized pastures was lower than that in the control group (P < 0.05). The contents of iron (Fe) and Mo in blood and liver of grazing animals from fertilized pastures were higher than that in the control group (P < 0.05). The Cd content in blood of grazing animals in group II and group III was lower than that in the control group (P < 0.05). The Cu content in blood and liver of grazing animals in fertilized pastures was lower than that in the control group (P < 0.05). The content of selenium (Se) in blood of grazing animals in group II and group III was higher than that in the control group (P < 0.05). The levels of blood including hemoglobin (Hb), erythrocyte count (RBC), and packed cell volume (PCV) in group II and group III were higher than that in the control group (P < 0.05). The white blood cell (RBC) count in group II and group III was lower than that in the control group (P < 0.05). The activities of serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and ceruloplasmin (Cp) in group II and group III were higher than that in the control group (P < 0.05). The content of malondialdehyde (MDA) in group II and group III was lower than that in the control group (P < 0.05). In conclusion, the application of nano-Mo fertilizer on Cu- and Cd-contaminated grasslands changed the contents of mineral elements in soil, forage, and blood of grazing sheep, improved the antioxidant capacity, affected the Cu metabolism of grazing Chinese Merino sheep caused by Cu and Cd pollutions, and alleviated the toxic damage of heavy metal pollutions.


Subject(s)
Metals, Heavy , Selenium , Animals , Antioxidants , Cadmium/toxicity , Copper/metabolism , Fertilizers , Grassland , Metals, Heavy/analysis , Molybdenum/pharmacology , Sheep , Sheep, Domestic/metabolism , Soil
11.
Biol Trace Elem Res ; 200(6): 2750-2757, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34482497

ABSTRACT

Mineral development and metal smelting seriously polluted the surrounding groundwater and soil, threatening human health through the food chain. To investigate the effects of different sources of molybdenum (Mo) fertilizers on immune function of Nanjiang brown goats grazing on natural pastures under compound pollutions, fertilizing experiment was carried out in Liangshan Yi Nationality Prefecture of the Western Sichuan Plateau, China. Eighteen square hectometers of polluted meadows were fenced and were randomly divided into three groups (3 replications/group and 2 hm2/replication). A total of 54 healthy Nanjiang brown goats with an average BW of 31.6 ± 1.5 kg (1 year old) were used to this 30-day test (18 goats per group). The goats from CON group, AM group, and PM group were orally supplemented with deionized water, 15 mg Mo/BW·d (ammonium molybdate tetrahydrate), and 15 mg Mo/BW·d (potassium molybdate), respectively. Compared to CON group, the serum Fe content of grazing animals from AM group and PM group was 10.05% and 3.45% higher (P < 0.05), and the serum Cu content of grazing animals from AM group and PM group was 69.05% and 67.86% lower, respectively (P < 0.05). Mo fertilization significantly increased the levels of blood Hb, RBC, and PCV, and the activities of serum SOD, GSH-Px, CAT, and Cp of grazing goats (P < 0.05), and also extremely decreased the MDA content of experimental goats fed Mo compared to the control goats (P < 0.05). Compared to CON group, the activities of serum IgG, IgA, IgM, IL-2, and TNF-α of grazing animals from AM group and PM group were significantly increased (P < 0.05), and the levels of serum IL-6 and IL-1ß of grazing goats from AM group and PM group were extremely decreased (P < 0.05). In summary, oral Mo fertilizers can alter the contents of serum mineral elements, reduce oxidative stress, improve immune function, and relieve the toxic damage of goats grazing on contaminated natural grasslands.


Subject(s)
Goats , Molybdenum , Administration, Oral , Animals , Fertilizers , Immunity , Molybdenum/pharmacology
12.
Biol Trace Elem Res ; 200(8): 3608-3620, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34669150

ABSTRACT

The Procapra przewalskii inhabits in a selenium (Se)-deprived environment in long-term, but they have no pathological manifestations due to the Se deprivation. This study aimed to reveal the underlying adaptation induced by Se deprivation. In the analysis, a total of 93 significantly changed metabolites were identified in positive and negative ion modes, including 46 upregulated and 47 downregulated compounds in the Se-deprived group. The differential metabolites were annotated as the major molecules in bile acid biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism, respectively. This study systematically analyzed the serum metabolomics characteristics of P. przewalskii under Se-deprived conditions for the first time, providing a basis for further understanding of the metabolic mechanism of P. przewalskii in the Se-deprived environment.


Subject(s)
Selenium , Chromatography, High Pressure Liquid , Metabolomics
13.
Biol Trace Elem Res ; 200(9): 3975-3982, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34739675

ABSTRACT

Intrauterine growth retardation (IUGR) is the main death cause of newborn piglets in large-scale farms. To investigate the effects of maternal nano-selenium (nano-Se) and Macleaya cordata extracts (MCE) on immune functions of IUGR piglets in large scale farms, a 2 × 2 factorial design was adopted in this test, and two factors were nano-Se (0, 0.50 mg/kg) and MCE (0, 500 mg/kg). A total of 32 ternary hybrid sows (Landrace × Yorkshire × Duroc, parity 2) were used in this 25-day trial from day 90 of pregnancy to delivery. The dietary treatments were as follows: (1) CON group, basic diet (0.0 mg/kg Se); (2) Nano-Se group, basic diet + 0.50 mg/kg added Se (nano-Se); (3) MCE group, basic diet + 500 mg/kg added MCE; (4) Combined group, basic diet + 0.50 mg/kg added nano-Se and 500 mg/kg added MCE. Maternal nano-Se or combination of nano-Se and MCE diets extremely increased the superoxide dismutase (SOD), catalase (CAT), superoxide dismutase (GSH-Px) contents in the serum and liver of IUGR offspring (P < 0.05), and MCE supplementation in sow diets remarkably increased the serum superoxide dismutase (SOD), catalase (CAT), and superoxide dismutase (GSH-Px) contents of IUGR piglets (P < 0.05). Adding nano-Se, MCE, or nano-Se and MCE to sow diets decreased the malondialdehyde (MDA) content in the serum and liver of IUGR piglets (P < 0.05). The supplementation of nano-Se and combined diets extremely increased the activities of immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum and liver of IUGR offspring (P < 0.05). Maternal nano-Se, MCE, and combined diets greatly decreased the levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin-1ß (IL-1ß) in the serum and liver of IUGR piglets (P < 0.05). Together, the application of nano-Se and/or MCE to sow diets improved antioxidant capacities and immune functions of IUGR offspring, and alleviated oxidative stress.


Subject(s)
Antioxidants , Fetal Growth Retardation , Plant Extracts , Selenium , Animals , Female , Pregnancy , Animal Feed/analysis , Catalase , Diet/veterinary , Dietary Supplements , Immunity , Plant Extracts/pharmacology , Selenium/pharmacology , Superoxide Dismutase , Swine
14.
Biol Trace Elem Res ; 199(9): 3297-3302, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33123866

ABSTRACT

The fencing device on pasture has seriously restricted the foraging range in grazing animals. As a result, the incidence of selenium (Se) deficiency is rising in grazing Choko yaks in the Shouqu prairie in Northwest China. To study the effect of Se deprivation on antioxidant capacity in the Choko yaks, the mineral contents in soil, forage, blood, and liver have been analyzed. The parameters of physiology and biochemistry in animal were also measured. The tested results showed that Se contents in soil and forage from tested pastures were very greatly lower than those in the control ranges (P < 0.01), and there were no extreme differences in other elements. Se contents in blood and the liver in tested animals were very extremely lower than those in the control yaks (P < 0.01). Levels of hemoglobin (Hb), erythrocyte (RBC), and hematocrit (HCT) were very extremely less than those in the control group (P < 0.01). Activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) in blood from the tested yaks were very much lower than those in the control animals (P < 0.01). Contents of malondialdehyde (MDA) in tested yaks were extremely higher than those in the control animals (P < 0.01). Therefore, it is suggested that Se-deficient forage in natural habitat not only influenced mineral contents in the blood and the liver but also causes serious harm to antioxidant function in the Choko yaks.


Subject(s)
Selenium , Animals , Antioxidants , Cattle , China , Glutathione Peroxidase , Grassland , Superoxide Dismutase
15.
Huan Jing Ke Xue ; 41(2): 734-742, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608732

ABSTRACT

Spatial and temporal characteristics of release fluxes of sediment nitrogen (N) and phosphorus (P) were investigated in the high-risk period of algal blooms in Lake Erhai. Moreover, the influence factors were examined. Results show that the release flux of N and P increased in recent years, exhibiting a clear increase in the period from 2009 to 2013, and a slight increase in the period since 2013. The release flux of dissolved total nitrogen (DTN) ranged between 11.71-14.15 mg·(m2·d)-1, within which the release flux of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) were 6.39-8.42 mg·(m2·d)-1 and 5.31-5.73 mg·(m2·d)-1, accounting for 58% and 42% of the DTN, respectively. The release flux of dissolved total phosphorus (DTP) ranged between 0.11-0.14 mg·(m2·d)-1, within which the release flux of dissolved organic phosphorus (DOP) and dissolved inorganic phosphorus (DIP) were 0.04-0.05 mg·(m2·d)-1 and 0.07-0.09 mg·(m2·d)-1, accounting for 34% and 66% of the DTP, respectively. The distribution of release flux of N showed a decreasing order:south > north > middle, while P was north > middle > south. The release flux of N increased by 17%, 13% and 23%, and the release flux of P increased by 19%, 28%, and 29% in north, middle, and south part of Lake Erhai from 2009 to 2018. Comparing the years 2009, 2013 and 2018, although the contents of N and P were stable, the release flux of N and P in the sediment was enhanced due to increasing pH and decreasing DO. Therefore, the increasing release of nitrogen and phosphorus from sediments, caused by changes in the water environment factors, should be paid attention to for the protection of Lake Erhai.


Subject(s)
Eutrophication , Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Geologic Sediments/chemistry , Spatio-Temporal Analysis
16.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3435-3440, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31602906

ABSTRACT

The aim of this paper was to investigate the anti-inflammatory effect of Tripterygium wilfordii processed with licorice on DSS-induced ulcerative colitis( UC) mice and its regulation on intestinal immune system. In this study,a DSS-induced animal model of UC mice was established,with mesalazine( Mes) as a positive drug. The pharmacodynamic effects of low( PT1) and high( PT2)doses of T. wilfordii processed with licorice were analyzed by disease activity index( DAI),colon length and colon histopathological score in mice. By detecting the expression levels of TNF-α and IL-6 cytokines in the serum of mice,immunohistochemical CD3+T and Fox P3+Treg staining in the colon of mice,the anti-inflammatory and immunoregulatory effects of T. wilfordii processed with licorice on UC mice were analyzed. The hepatotoxicity of each dose of T. wilfordii processed with licorice was also analyzed by HE staining in liver tissue of mice and ALT and AST levels in serum. The results showed that the colitis symptoms of the mice in the PT1 group and the PT2 group were alleviated,the inflammatory cell infiltration was reduced. And the expression of inflammatory factors was decreased,the difference was statistically significant compared with the model group( P<0. 05). The HE staining and ALT and AST levels in the high dose group and low dose group were not significantly different from those in the normal group. The results showed that T. wilfordii processed with licorice has the anti-inflammatory and immunomodulatory effects on UC mice,and the dose did not show significant hepatotoxicity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Glycyrrhiza/chemistry , Tripterygium/chemistry , Animals , Dextran Sulfate , Mice , Plant Extracts/pharmacology
17.
J Pharm Biomed Anal ; 165: 233-241, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30557781

ABSTRACT

To identify more chemical markers for improving the quality standard and evaluate producing areas differentiation of Astragali Radix (AR), a simple, low-cost and reliable chromatography method based on a high performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detector and charged aerosol detector (CAD) for separation of 13 major chemical components, including 8 flavonoids and 5 astragalosides in AR extract, was developed. The contents of 13 compounds in total of 27 herb samples, collected from different cultivating regions, were determined and compared. Moreover, chemometric analysis techniques with principal component constituent analysis (PCA) and cluster analysis (CA) were performed to discriminate the samples from different producing areas. As a result, an obvious linkage between the content of components and collecting areas was found. Results showed that the content of astragaloside III and astragaloside IV could be used to differentiate samples collected from Northeast China, Inner Mongolia and Shanxi Province, suggesting that they should be added as the chemical marker for further investigation on the pharmacological actions and the quality control of AR.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Plant Extracts/chemistry , Astragalus propinquus , China , Cluster Analysis , Plant Extracts/analysis , Principal Component Analysis , Quality Control , Ultraviolet Rays
18.
Acta Pharmacol Sin ; 39(10): 1645-1660, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29849127

ABSTRACT

Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 µg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , DNA Damage/drug effects , Escin/therapeutic use , Sequestosome-1 Protein/metabolism , Animals , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation , Escin/pharmacology , Female , Histones/genetics , Histones/metabolism , Humans , Mice, Nude , Sequestosome-1 Protein/genetics , Signal Transduction/drug effects , Up-Regulation
19.
Zhongguo Zhong Yao Za Zhi ; 43(5): 1049-1053, 2018 Mar.
Article in Chinese | MEDLINE | ID: mdl-29676107

ABSTRACT

With the growth of number of Chinese patent medicines and clinical use, the rational use of Chinese medicine is becoming more and more serious. Due to the complexity of Chinese medicine theory and the uncertainty of clinical application, the prescription review of Chinese patent medicine always relied on experience in their respective, leading to the uncontrolled of clinical rational use. According to the traditional Chinese medicine (TCM) theory and characteristics of the unique clinical therapeutics, based on the practice experience and expertise comments, our paper formed the expert consensus on the prescription review of Chinese traditional patent medicine for promoting the rational use of drugs in Beijing. The objective, methods and key points of prescription review of Chinese patent medicine, were included in this expert consensus, in order to regulate the behavior of prescription and promote rational drug use.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Nonprescription Drugs , Beijing , Consensus , Prescriptions
20.
Zhongguo Zhong Yao Za Zhi ; 42(1): 119-124, 2017 Jan.
Article in Chinese | MEDLINE | ID: mdl-28945035

ABSTRACT

To explore the effect of the licorice-processed Tripterygium wilfordii on reducing the liver toxicity. In animal experiments, the liver toxicity of T. wilfordii was evaluated both before and after processing, and the differences in liver tissue biopsy, serum biochemical indexes and inflammatory cell factor among blank group, T. wilfordii group and licorice-processed T. wilfordii group were observed. Liver tissue biopsy results showed that liver tissue injury was obvious in T. wilfordii group, and no obvious injury was found in licorice-processed T. wilfordii group. As compared with the blank group, the levels of AST, ALT and CRE were significantly increased (P<0.01), UREA was increased (P<0.05), and ALB level was significantly decreased (P<0.01) in the T. wilfordii group. As compared with T. wilfordii group, the levels of AST, ALT, CRE, and UREA were decreased (P<0.01), while ALB was increased (P<0.01) in the licorice-processed T. wilfordii group. The results of inflammatory factors in rats showed that the levels of IL-1ß, IL-6, and TNF-α in T. wilfordii group were significantly higher than those in blank group (P<0.01); the levels of IL-1ß, IL-6, and TNF-α in licorice-processed T. wilfordii group were significantly lower than those in T. wilfordii group (P<0.01). Overall, licorice processing of T. wilfordii can effectively reduce the liver toxicity and reduce the liver injury caused by T. wilfordii. The experiment can provide reference for the clinical rational use of the T. wilfordii, and provide data support for the studies on reducing the liver toxicity of T. wilfordii by licorice processing.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Glycyrrhiza/chemistry , Liver/drug effects , Tripterygium/toxicity , Animals , Interleukin-1beta/blood , Interleukin-6/blood , Rats , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL