Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Biomolecules ; 14(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540764

ABSTRACT

Ginseng (Panax ginseng C.A. Meyer) is a perennial herb belonging to the family Araliaceae and has been used for thousands of years in East Asia as an essential traditional medicine with a wide range of pharmacological activities of its main active ingredient, ginsenosides. The AP2/ERF gene family, widely present in plants, is a class of transcription factors capable of responding to ethylene regulation that has an influential role in regulating the synthesis of major active ingredients in medicinal plants and in response to biotic and abiotic stresses, which have not been reported in Panax ginseng. In this study, the AP2/ERF gene was localized on the ginseng chromosome, and an AP2/ERF gene duplication event was also discovered in Panax ginseng. The expression of seven ERF genes and three key enzyme genes related to saponin synthesis was measured by fluorescence quantitative PCR using ethylene treatment of ginseng hairy roots, and it was observed that ethylene promoted the expression of genes related to the synthesis of ginsenosides, among which the PgERF120 gene was the most sensitive to ethylene. We analyzed the sequence features and expression patterns of the PgERF120 gene and found that the expression of the PgERF120 gene was specific in time and space. The PgERF120 gene was subsequently cloned, and plant overexpression and RNA interference vectors were constructed. Ginseng adventitious roots were transformed using the Agrobacterium tumefaciens-mediated method to obtain transgenic ginseng hairy roots, and the gene expression, ginsenoside content and malondialdehyde content in overexpression-positive hairy roots were also analyzed. This study preliminarily verified that the PgERF120 gene can be involved in the regulation of ginsenoside synthesis, which provides a theoretical basis for the study of functional genes in ginseng and a genetic resource for the subsequent use of synthetic biology methods to improve the yield of ginsenosides.


Subject(s)
Ginsenosides , Panax , Panax/genetics , Panax/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant
2.
Plants (Basel) ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475452

ABSTRACT

Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes.

3.
BMC Plant Biol ; 24(1): 47, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216888

ABSTRACT

Panax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.


Subject(s)
Ginsenosides , Panax , Ginsenosides/metabolism , Panax/genetics , Panax/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Gene Expression Regulation, Plant , Plant Roots/metabolism
4.
Food Funct ; 14(21): 9815-9824, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37850317

ABSTRACT

Background: Chronic inflammation contributes to the occurrence and progression of many diseases. Most previous clinical studies have explored the effect of high-dose CoQ10 supplements on inflammation. Food is another important source of CoQ10, but the relationship between the intake of CoQ10 from dietary sources and inflammation was unknown. We aimed to explore the dose-response association between the intake of dietary-derived CoQ10 and inflammation-related biomarkers. Methods: Seven thousand nine hundred and fifty-three Chinese adults from the China Health and Nutrition Survey (CHNS) were the subjects of this cross-sectional investigation. Dietary CoQ10 intake was assessed using dietary information from three days. High-sensitivity C-reactive protein (hsCRP) and white blood cell count (WBC) were assessed using fasting venous blood. Results: In an adjusted linear regression model, CoQ10 consumption from dietary sources was inversely associated with hsCRP, with effect sizes in each group: Q2 (ß = -0.85 mg L-1, 95% CI: -1.43 to -0.28 mg L-1, P = 0.004), Q3 (ß = -0.70 mg L-1, 95% CI: -1.28 to -0.12 mg L-1, P = 0.017), and Q4 (ß = -0.79 mg L-1, 95% CI: -1.39 to -0.19 mg L-1, P = 0.010). Moreover, restricted cubic splines (RCS) revealed a non-linear L-shaped association between dietary-derived CoQ10 consumption and hsCRP (Pnonlinear < 0.001). According to subgroup analyses, these relationships were more significant in males, or >45 years old (Ptrend < 0.05). Nevertheless, no significant relationship was found between dietary-derived CoQ10 intake and WBC. Conclusions: These findings suggested a significant negative association between dietary-derived CoQ10 and hsCRP levels.


Subject(s)
C-Reactive Protein , East Asian People , Vitamins , Adult , Humans , Male , Middle Aged , C-Reactive Protein/metabolism , Cross-Sectional Studies , Dietary Supplements , Inflammation/metabolism , Vitamins/analysis
5.
Plants (Basel) ; 12(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37653897

ABSTRACT

Panax ginseng is a valuable medicinal herb of the Araliaceae family with various pharmacological activities. The Trihelix transcription factors family is involved in growth and secondary metabolic processes in plants, but no studies have been reported on the involvement of Trihelix genes in secondary metabolic processes in ginseng. In this study, weighted co-expression network analysis, correlation analysis between PgGTs and ginsenosides and key enzyme genes, and interaction network analysis between PgGTs and key enzyme genes were used to screen out the PgGT25-04 gene, which was negatively correlated with ginsenoside synthesis. Using ABA treatment of ginseng hair roots, PgGT genes were found to respond to ABA signals. Analysis of the sequence characteristics and expression pattern of the PgGT25-04 gene in ginseng revealed that its expression is spatiotemporally specific. The interfering vector pBI121-PgGT25-04 containing the PgGT25-04 gene was constructed, and the ginseng adventitious roots were transformed using the Agrobacterium-mediated method to obtain the pBI121-PgGT25-04 positive hairy root monocot line. The saponin contents of positive ginseng hair roots were measured by HPLC, and the changes in PgGT25-04 and key enzyme genes in positive ginseng hair roots were detected via fluorescence quantitative RT-PCR. These results preliminarily identified the role of the PgGT25-04 gene in the secondary metabolism of ginseng in Jilin to provide a theoretical basis for the study of Trihelix transcription factors in Panax ginseng.

6.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569353

ABSTRACT

Ginseng (Panax ginseng C.A. Meyer) is a perennial herb of the Araliaceae family, a traditional and valuable Chinese herb in China. The main active component of ginseng is ginsenoside. The NAC transcription factors belong to a large family of plant-specific transcription factors, which are involved in growth and development, stress response and secondary metabolism. In this study, we mapped the NAC gene family on 24 pairs of ginseng chromosomes and found numerous gene replications in the genome. The NAC gene PgNAC41-2, found to be highly related to ginsenoside synthesis, was specifically screened. The phylogeny and expression pattern of the PgNAC41-2 gene were analyzed, along with the derived protein sequence, and a structure model was generated. Furthermore, the PgNAC41-2 gene was cloned and overexpressed by a Rhizobium rhizogenes mediated method, using ginseng petioles as receptor material. The saponin content of the transformed material was analyzed to verify the function of the NAC transcription factor in ginseng. Our results indicate that the PgNAC41-2 gene positively regulates the biosynthesis of saponins.


Subject(s)
Ginsenosides , Panax , Saponins , Saponins/metabolism , Amino Acid Sequence , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
7.
BMC Plant Biol ; 23(1): 376, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37525122

ABSTRACT

Panax ginseng is a well-known medicinal plant with several pharmacological uses in China. The trihelix family transcription factors, also known as GT factors, can be involved in the regulation of growth and developmental processes in plants. There have been no in-depth reports or systematic studies about the trihelix transcription factor in ginseng. In this study, the structure, chromosomal localization, gene duplication, phylogeny, functional differentiation, expression patterns and coexpression interactions of trihelix transcripts were analysed using bioinformatics methods based on the ginseng transcriptome database. Thirty-two trihelix transcription factor genes were identified in ginseng, and these genes were alternatively spliced to obtain 218 transcripts. These transcripts were unevenly distributed on different chromosomes of ginseng, and phylogenetic analysis classified the PgGT transcripts into five subgroups. Gene Ontology (GO) analysis classified PgGT transcripts into eight functional subclasses, indicating that they are functionally diverse. The expression pattern analysis of 218 PgGT transcripts revealed that their expression was tissue-specific and spatiotemporally-specific in 14 different tissues of 4-year-old ginseng, 4 different ages of ginseng roots, and 42 farmers' cultivars of 4-year-old ginseng roots. Despite the differences in the expression patterns of these transcripts, coexpression network analysis revealed that these transcripts could be expressed synergistically in ginseng. In addition, two randomly selected PgGT transcripts in each of the five different subfamilies were subjected to methyl jasmonate treatment at different times, and PgGT was able to respond to the regulation of methy1 jasmonate. These results provide a theoretical basis and gene resources for an in-depth study of the function of trihelix genes in other plants.


Subject(s)
Panax , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Panax/genetics , Panax/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling
8.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834759

ABSTRACT

Ginseng (Panax ginseng C. A. Meyer) is a perennial herb from the genus Panax in the family Araliaceae. It is famous in China and abroad. The biosynthesis of ginsenosides is controlled by structural genes and regulated by transcription factors. GRAS transcription factors are widely found in plants. They can be used as tools to modify plant metabolic pathways by interacting with promoters or regulatory elements of target genes to regulate the expression of target genes, thereby activating the synergistic interaction of multiple genes in metabolic pathways and effectively improving the accumulation of secondary metabolites. However, there are no reports on the involvement of the GRAS gene family in ginsenoside biosynthesis. In this study, the GRAS gene family was located on chromosome 24 pairs in ginseng. Tandem replication and fragment replication also played a key role in the expansion of the GRAS gene family. The PgGRAS68-01 gene closely related to ginsenoside biosynthesis was screened out, and the sequence and expression pattern of the gene were analyzed. The results showed that the expression of PgGRAS68-01 gene was spatio-temporal specific. The full-length sequence of PgGRAS68-01 gene was cloned, and the overexpression vector pBI121-PgGRAS68-01 was constructed. The ginseng seedlings were transformed by Agrobacterium rhifaciens-mediated method. The saponin content in the single root of positive hair root was detected, and the inhibitory role of PgGRAS68-01 in ginsenoside synthesis is reported.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/chemistry , Panax/chemistry , Saponins/chemistry , Metabolic Networks and Pathways , Genes, Plant , Plant Roots/metabolism
9.
BMC Plant Biol ; 23(1): 30, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36639779

ABSTRACT

BACKGROUND: Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS: We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS: The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.


Subject(s)
Panax , Plant Proteins , Gene Expression Regulation, Plant , Genome, Plant , Hydrogen-Ion Concentration , Panax/genetics , Panax/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Multigene Family
10.
Int J Mol Sci ; 23(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36430494

ABSTRACT

Genes are the keys to deciphering the molecular mechanism underlying a biological trait and designing approaches desirable for plant genetic improvement. Ginseng is an important medicinal herb in which ginsenosides have been shown to be the major bioactive component; however, only a few genes involved in ginsenoside biosynthesis have been cloned through orthologue analysis. Here, we report the identification of 21 genes controlling Rb1 biosynthesis by stepwise ginseng transcriptome and Rb1 content integrated analysis. We first identified the candidate genes for Rb1 biosynthesis by integrated analysis of genes with the trait from four aspects, including gene transcript differential expression between highest- and lowest-Rb1 content cultivars, gene transcript expression-Rb1 content correlation, and biological impacts of gene mutations on Rb1 content, followed by the gene transcript co-expression network. Twenty-two candidate genes were identified, of which 21 were functionally validated for Rb1 biosynthesis by gene regulation, genetic transformation, and mutation analysis. These genes were strongly correlated in expression with the previously cloned genes encoding key enzymes for Rb1 biosynthesis. Based on the correlations, a pathway for Rb1 biosynthesis was deduced to indicate the roles of the genes in Rb1 biosynthesis. Moreover, the genes formed a strong co-expression network with the previously cloned Rb1 biosynthesis genes, and the variation in the network was associated with the variation in the Rb1 content. These results indicate that Rb1 biosynthesis is a process of correlative interactions among Rb1 biosynthesis genes. Therefore, this study provides new knowledge, 21 new genes, and 96 biomarkers for Rb1 biosynthesis useful for enhanced research and breeding in ginseng.


Subject(s)
Ginsenosides , Panax , Panax/genetics , Panax/metabolism , Transcriptome , Plant Breeding , Phenotype
11.
BMC Plant Biol ; 22(1): 479, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209052

ABSTRACT

BACKGROUND: As the king of all herbs, the medicinal value of ginseng is self-evident. The perennial nature of ginseng causes its quality to be influenced by various factors, one of which is the soil environment. During plant growth and development, MYB transcription factors play an important role in responding to abiotic stresses and regulating the synthesis of secondary metabolites. However, there are relatively few reports on the MYB transcription factor family in Panax ginseng. RESULTS: This study identified 420 PgMYB transcripts under 117 genes ID in the Jilin ginseng transcriptome database. Phylogenetic analysis showed that PgMYB transcripts in Jilin ginseng were classified into 19 functional subclasses. The GO annotation result indicated that the functional differentiation of PgMYB transcripts was annotated to 11 functional nodes at GO Level 2 in ginseng. Expression pattern analysis of PgMYB transcripts based on the expression data (TPM) that PgMYB transcripts were revealed spatiotemporally specific in expression patterns. We performed a weighted network co-expression network analysis on the expression of PgMYB transcripts from different samples. The co-expression network containing 51 PgMYB transcripts was formed under a soft threshold of 0.85, revealing the reciprocal relationship of PgMYB in ginseng. Treatment of adventitious roots of ginseng with different concentrations of NaCl revealed four up-regulated expression of PgMYB transcripts that can candidate genes for salt resistance studies in ginseng. CONCLUSIONS: The present findings provide data resources for the subsequent study of the functions of MYB transcription factor family members in ginseng, and provide an experimental basis for the anti-salt functions of MYB transcription factors in Panax ginseng.


Subject(s)
Panax , Gene Expression Profiling , Gene Expression Regulation, Plant , Panax/genetics , Panax/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Sodium Chloride/metabolism , Soil , Transcription Factors/genetics , Transcription Factors/metabolism
12.
BMC Plant Biol ; 22(1): 320, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35787249

ABSTRACT

Jilin ginseng (Panax ginseng C. A. Meyer) has a long history of medicinal use worldwide. The quality of ginseng is governed by a variety of internal and external factors. Nuclear factor Y (NF-Y), an important transcription factor in eukaryotes, plays a crucial role in the plant response to abiotic stresses by binding to a specific promoter, the CCAAT box. However, the NF-Y gene family has not been reported in Panax ginseng. In this study, 115 PgNF-Y transcripts with 40 gene IDs were identified from the Jilin ginseng transcriptome database. These genes were classified into the PgNF-YA (13), PgNF-YB (14), and PgNF-YC (13) subgroups according to their subunit types, and their nucleotide sequence lengths, structural domain information, and amino acid sequence lengths were analyzed. The phylogenetic analysis showed that the 79 PgNF-Y transcripts with complete ORFs were divided into three subfamilies, NF-YA, NF-YB, and NF-YC. PgNF-Y was annotated to eight subclasses under three major functions (BP, MF, and CC) by GO annotation, indicating that these transcripts perform different functions in ginseng growth and development. Expression pattern analysis of the roots of 42 farm cultivars, 14 different tissues of 4-year-old ginseng plants, and the roots of 4 different-ages of ginseng plants showed that PgNF-Y gene expression differed across lineages and had spatiotemporal specificity. Coexpression network analysis showed that PgNF-Ys acted synergistically with each other in Jilin ginseng. In addition, the analysis of the response of PgNF-YB09, PgNF-YC02, and PgNF-YC07-04 genes to salt stress treatment was investigated by fluorescence quantitative PCR. The expression of these genes increased after salt stress treatment, indicating that they may be involved in the regulation of the response to salt stresses in ginseng. These results provide important functional genetic resources for the improvement and gene breeding of ginseng in the future.Conclusions: This study fills a knowledge gap regarding the NF-Y gene family in ginseng, provides systematic theoretical support for subsequent research on PgNF-Y genes, and provides data resources for resistance to salt stress in ginseng.


Subject(s)
Panax , CCAAT-Binding Factor , Gene Expression Regulation, Plant , Panax/genetics , Panax/metabolism , Phylogeny , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Salt Stress , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
13.
Sci Rep ; 12(1): 10165, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715520

ABSTRACT

The C2H2 zinc finger protein (C2H2-ZFP) gene family plays important roles in response to environmental stresses and several other biological processes in plants. Ginseng is a precious medicinal herb cultivated in Asia and North America. However, little is known about the C2H2-ZFP gene family and its functions in ginseng. Here, we identified 115 C2H2-ZFP genes from ginseng, defined as the PgZFP gene family. It was clustered into five groups and featured with eight conserved motifs, with each gene containing one to six of them. The family genes are categorized into 17 gene ontology subcategories and have numerous regulatory elements responsive to a variety of biological process, suggesting their functional differentiation. The 115 PgZFP genes were spliced into 228 transcripts at seed setting stage and varied dramatically in expression across tissues, developmental stages, and genotypes, but they form a co-expression network, suggesting their functional correlation. Furthermore, four genes, PgZFP31, PgZFP78-01, PgZFP38, and PgZFP39-01, were identified from the gene family that were actively involved in plant response to salt stress. These results provide new knowledge on origin, differentiation, evolution, and function of the PgZFP gene family and new gene resources for C2H2-ZFP gene research and application in ginseng and other plant species.


Subject(s)
CYS2-HIS2 Zinc Fingers , Panax , CYS2-HIS2 Zinc Fingers/genetics , Gene Expression Regulation, Plant , Panax/genetics , Panax/metabolism , Phylogeny , Plant Proteins/metabolism , Salt Stress , Zinc Fingers/genetics
14.
Zhongguo Zhong Yao Za Zhi ; 47(1): 62-71, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178912

ABSTRACT

Dof(DNA binding with one finger), a unique class of transcription factors in plants, play an important role in seed development, tissue differentiation, and metabolic regulation. To identify the number and function of Dof gene family members in Panax ginseng, this study identified the members of Dof gene family in P. ginseng and systematically analyzed their structures, evolution, functional differentiation, expression patterns, and interactions using bioinformatics methods at the transcriptome level. At the same time, the association analysis of Dof genes from P. ginseng with key enzyme genes for ginsenoside synthesis was carried out to screen the candidate PgDof genes involved in the regulation of ginsenoside biosynthesis. The results showed that there were 54 genes belonging to the Dof gene family in P. ginseng from Jilin. All PgDof genes had Zf-Dof conserved motifs, implying that they were evolutionarily conserved and could be divided into five groups. Expression pattern analysis confirmed that the expression of PgDof gene family members in different tissues, different year-old P. ginseng, and different farm varieties varied significantly. Simultaneously, as revealed by "gene-saponin content" and "gene-gene" linkage analysis, an important candidate PgDof14-1 gene involved in the regulation of ginsenoside biosynthesis was obtained. From the established genetic transformation system of this gene in the hairy roots of P. ginseng, a positive hairy root clone was determined. This study has laid a theoretical foundation for the study of Dof gene family in P. ginseng.


Subject(s)
Ginsenosides , Panax , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Transcriptome
15.
BMC Genomics ; 22(1): 316, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33932982

ABSTRACT

BACKGROUND: Ginseng is an important medicinal herb in Asia and Northern America. The basic leucine zipper (bZIP) transcription factor genes play important roles in many biological processes and plant responses to abiotic and biotic stresses, such as drought stress. Nevertheless, the genes remain unknown in ginseng. RESULTS: Here, we report 91 bZIP genes identified from ginseng, designated PgbZIP genes. These PgbZIP genes were alternatively spliced into 273 transcripts. Phylogenetic analysis grouped the PgbZIP genes into ten groups, including A, B, C, D, E, F, G, H, I and S. Gene Ontology (GO) categorized the PgbZIP genes into five functional subcategories, suggesting that they have diversified in functionality, even though their putative proteins share a number of conserved motifs. These 273 PgbZIP transcripts expressed differentially across 14 tissues, the roots of different ages and the roots of different genotypes. However, the transcripts of the genes expressed coordinately and were more likely to form a co-expression network. Furthermore, we studied the responses of the PgbZIP genes to drought stress in ginseng using a random selection of five PgbZIP genes, including PgbZIP25, PgbZIP38, PgbZIP39, PgbZIP53 and PgbZIP54. The results showed that all five PgbZIP genes responded to drought stress in ginseng, indicating that the PgbZIP genes play important roles in ginseng responses to drought stress. CONCLUSIONS: These results provide knowledge and gene resources for deeper functional analysis of the PgbZIP genes and molecular tools for enhanced drought tolerance breeding in ginseng.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Panax , Asia , Basic-Leucine Zipper Transcription Factors/genetics , Droughts , Gene Expression Regulation, Plant , Leucine Zippers/genetics , North America , Panax/genetics , Panax/metabolism , Phylogeny , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
16.
Mol Genet Genomics ; 296(4): 971-983, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34008042

ABSTRACT

RNA alternative splicing (AS) is prevalent in higher organisms and plays a paramount role in biology; therefore, it is crucial to have comprehensive knowledge on AS to understand biology. However, knowledge is limited about how AS activates in a single plant and functions in a biological process. Ginseng is one of the most widely used medicinal herbs that is abundant in a number of medicinal bioactive components, especially ginsenosides. In this study, we sequenced the transcripts of 14 organs from a 4-year-old ginseng plant and quantified their ginsenoside contents. We identified AS genes by analyzing their transcripts with the ginseng genome and verified their AS events by PCR. The plant had a total of 13,863 AS genes subjected to 30,801 AS events with five mechanisms: skipped exon, retained intron, alternative 5'splice site, alternative 3' splice site, and mutually exclusive exon. The genes that were more conserved, had more exons, and/or expressed across organs were more likely to be subjected to AS. AS genes were enriched in over 500 GO terms in the plant even though the number of AS gene-enriched GO terms varied across organs. At least 24 AS genes were found to be involved in ginsenoside biosynthesis. These AS genes were significantly up-enriched and more likely to form a co-expression network, thus suggesting the functions of AS and correlations of the AS genes in the process. This study provides comprehensive insights into the molecular characteristics and biological functions of AS in a single plant; thus, helping better understand biology.


Subject(s)
Alternative Splicing/genetics , Ginsenosides/biosynthesis , Panax , Base Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Ginsenosides/genetics , Metabolic Networks and Pathways/genetics , Panax/genetics , Panax/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
17.
Food Funct ; 12(13): 5793-5805, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34041517

ABSTRACT

Saponins derived from Panax notoginseng root are widely used as herbal medicines and dietary supplements due to their wide range of health benefits. However, the effects of those from Panax notoginseng flowers (PNF) on platelet function and thrombus formation remain largely unknown. Using a series of platelet function assays, we found that G-Rb2 and G-Rd2, among the ten PNF saponin monomers, significantly inhibited human platelet aggregation and activation induced by adenosine diphosphate (ADP) in vitro. The 50% inhibitory concentration (IC50) of G-Rb2 and G-Rd2 against ADP-induced platelet aggregation was 85.5 ± 4.5 µg mL-1 and 51.4 ± 4.6 µg mL-1, respectively. Mechanistically, G-Rb2 and G-Rd2 could effectively modulate platelet P2Y12-mediated signaling by up-regulating cAMP/PKA signaling and down-regulating PI3K/Akt/Erk1/2 signaling pathways. Co-incubation of the P2Y12 antagonist cangrelor with either G-Rb2 or G-Rd2 did not show significant additive inhibitory effects. G-Rb2 and G-Rd2 also substantially suppressed thrombus growth in a FeCl3-induced murine arteriole thrombosis model in vivo. Interestingly, G-Rd2 generally exhibited more potent inhibitory effects on platelet function and thrombus formation than G-Rb2. Thus, our data suggest that PNF-derived G-Rb2 and G-Rd2 effectively attenuate platelet hyperactivity through modulating signaling pathways downstream of P2Y12, which indicates G-Rb2 and G-Rd2 may play important preventive roles in thrombotic diseases.


Subject(s)
Flowers/chemistry , Ginsenosides/isolation & purification , Ginsenosides/pharmacology , Panax notoginseng/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Adenosine Diphosphate , Adenosine Monophosphate/analogs & derivatives , Animals , Blood Platelets/drug effects , Humans , Mice , Mice, Inbred C57BL , Plants, Medicinal , Platelet Aggregation/drug effects , Saponins , Thrombosis
18.
Genomics ; 113(4): 2304-2316, 2021 07.
Article in English | MEDLINE | ID: mdl-34048908

ABSTRACT

BACKGROUND: Jilin ginseng, Panax ginseng, is a valuable medicinal herb whose ginsenosides are its major bioactive components. The ginseng oxidosqualene cyclase (PgOSC) gene family is known to play important roles in ginsenoside biosynthesis, but few members of the gene family have been functionally studied. METHODS: The PgOSC gene family has been studied by an integrated analysis of gene expression-ginsenoside content correlation, gene mutation-ginsenoside content association and gene co-expression network, followed by functional analysis through gene regulation. RESULTS: We found that five of the genes in the PgOSC gene family, including two published ginsenoside biosynthesis genes and three new genes, were involved in ginsenoside biosynthesis. Not only were the expressions of these genes significantly correlated with ginsenoside contents, but also their nucleotide mutations significantly influenced ginsenoside contents. These results were further verified by regulation analysis of the genes by methyl jasmonate (MeJA) in ginseng hairy roots. Four of these five PgOSC genes were mapped to the ginsenoside biosynthesis pathway. These PgOSC genes expressed differently across tissues, but relatively consistent across developmental stages. These PgOSC genes formed a single co-expression network with those published ginsenoside biosynthesis genes, further confirming their roles in ginsenoside biosynthesis. When the network varied, ginsenoside biosynthesis was significantly influenced, thus revealing the molecular mechanism of ginsenoside biosynthesis. CONCLUSION: At least five of the PgOSC genes, including the three newly identified and two published PgOSC genes, are involved in ginsenoside biosynthesis. These results provide gene resources and knowledge essential for enhanced research and applications of ginsenoside biosynthesis in ginseng.


Subject(s)
Ginsenosides , Panax , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Ginsenosides/genetics , Intramolecular Transferases , Panax/genetics , Panax/metabolism , Plant Roots/genetics , Plant Roots/metabolism
19.
Life (Basel) ; 11(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923073

ABSTRACT

Panax ginseng C. A. Meyer is a kind of renascent herb that belongs to the genus Panax in the family Araliaceae. It is a traditional Chinese precious herbal medicine with a long history of medicinal use. Ginsenoside Rb3 is one of the important active ingredients in ginseng and has important physiological activity in the treatment of many diseases. In this study, we screened and systematically analyzed the candidate genes related to ginsenoside Rb3 synthesis through bioinformatics methods; discussed the functions, expression patterns, and interactions of the genes related to ginsenoside Rb3 synthesis; and finally, selected seven genes, mainly PgRb3, that directly contribute to the synthesis of ginsenoside Rb3. This study provides a reference for revealing the expression rules of ginsenoside Rb3 synthesis-related genes and elucidating the regulatory mechanism of methyl jasmonate, lays a theoretical foundation for the research of ginsenoside Rb3 synthesis, and provides theoretical and technical support for the factory production of ginsenoside monomer saponins.

20.
PLoS One ; 15(6): e0234423, 2020.
Article in English | MEDLINE | ID: mdl-32525906

ABSTRACT

The NAC gene family is one of the important plant-specific transcription factor families involved in variety of physiological processes. It has been found in several plant species; however, little is known about the gene family in ginseng, Panax ginseng C.A. Meyer. Here we report identification and systematic analysis of this gene family in ginseng. A total of 89 NAC genes, designated PgNAC01 to PgNAC89, are identified. These genes are alternatively spliced into 251 transcripts at fruiting stage of a four-year-old ginseng plant. The genes of this gene family have five conserved motifs and are clustered into 11 subfamilies, all of which are shared with the genes of the NAC gene families identified in the dicot and monocot model plant species, Arabidopsis and rice. This result indicates that the PgNAC gene family is an ancient and evolutionarily inactive gene family. Gene ontology (GO) analysis shows that the functions of the PgNAC gene family have been substantially differentiated; nevertheless, over 86% the PgNAC transcripts remain functionally correlated. Finally, five of the PgNAC genes, PgNAC05-2, PgNAC41-2, PgNAC48, PgNAC56-1, and PgNAC59, are identified to be involved in plant response to cold stress, suggesting that this gene family plays roles in response to cold stress in ginseng. These results, therefore, provide new insights into functional differentiation and evolution of a gene family in plants and gene resources necessary to comprehensively determine the functions of the PgNAC gene family in response to cold and other abiotic stresses in ginseng.


Subject(s)
Cold-Shock Response/genetics , Genes, Plant , Panax/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Malondialdehyde/metabolism , Multigene Family , Panax/metabolism , Phylogeny , Plant Proteins/genetics , Spatio-Temporal Analysis , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL