Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Gene ; 888: 147739, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37633535

ABSTRACT

The active ingredients of many medicinal plants are the secondary metabolites associated with the growth period. Lonicera japonica Thunb. is an important traditional Chinese medicine, and the flower development stage is an important factor that influences the quality of medicinal ingredients. In this study, transcriptomics and metabolomics were performed to reveal the regulatory mechanism of secondary metabolites during flowering of L. japonica. The results showed that the content of chlorogenic acid (CGA) and luteolin gradually decreased from green bud stage (Sa) to white flower stage (Sc), especially from white flower bud stage (Sb) to Sc. Most of the genes encoding the crucial rate-limiting enzymes, including PAL, C4H, HCT, C3'H, F3'H and FNSII, were down-regulated in three comparisons. Correlation analysis identified some members of the MYB, AP2/ERF, bHLH and NAC transcription factor families that are closely related to CGA and luteolin biosynthesis. Furthermore, differentially expressed genes (DEGs) involved in hormone biosynthesis, signalling pathways and flowering process were analysed in three flower developmental stage.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Luteolin , Gene Expression Profiling , Lonicera/genetics , Flowers/genetics , Flowers/metabolism , Hormones/metabolism , Transcriptome/genetics
2.
Nat Commun ; 6: 6099, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25600325

ABSTRACT

Single-walled carbon nanotube (SWNT)-based electronics have been regarded as one of the most promising candidate technologies to replace or supplement silicon-based electronics in the future. These applications require high-density horizontally aligned SWNT arrays. During the past decade, significant efforts have been directed towards growth of high-density SWNT arrays. However, obtaining SWNT arrays with suitable density and quality still remains a big challenge. Herein, we develop a rational approach to grow SWNT arrays with ultra-high density using Trojan catalysts. The density can be as high as 130 SWNTs µm(-1). Field-effect transistors fabricated with our SWNT arrays exhibit a record drive current density of -467.09 µA µm(-1) and an on-conductance of 233.55 µS µm(-1). Radio frequency transistors fabricated on these samples exhibit high intrinsic fT and fMAX of 6.94 and 14.01 GHz, respectively. These results confirm our high-density SWNT arrays are strong candidates for applications in electronics.

SELECTION OF CITATIONS
SEARCH DETAIL