Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Apoptosis ; 28(9-10): 1469-1483, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37354317

ABSTRACT

It is essential to further characterize liver injury aimed at developing novel therapeutic approaches. This study investigated the mechanistic basis of genipin against carbon tetrachloride (CCl4)-triggered acute liver injury concerning ferroptosis, a novel discovered modality of regulated cell death. All experiments were performed using hepatotoxic models upon CCl4 exposure in mice and human hepatocytes in vitro. Immunohistochemistry, immunoblotting, molecular docking, RNA-sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were conducted. CCl4 intoxication was manifested with lipid peroxidation-dictated ferroptotic cell death, together with changes in a cascade of ferroptosis-associated events and several regulatory pathways. Both the administration of genipin and ferrostatin-1 (Fer-1) significantly prevented this hepatotoxicity in response to CCl4 intoxication via upregulating GPX4 and xCT (i.e., critical regulators of ferroptosis). RNA-sequencing unraveled that arachidonic acid metabolism was considerably influenced upon genipin treatment. Accordingly, genipin treatment attenuated arachidonate 15-lipoxygenase (ALOX15)-launched lipid peroxidation in terms of UHPLC-MS/MS analysis and inflammation. In vitro, genipin supplementation rescued erastin-induced hepatocellular inviability and lipid ROS accumulation. The siRNA knockdown of GPX4 partially abrogated the protective effects of genipin on erastin-induced cytotoxicity, whereas the cytotoxicity was less severe in the presence of diminished ALOX15 expression in L-O2 cells. In conclusion, our findings uncovered that genipin treatment protects against CCl4-triggered acute liver injury by abrogating hepatocyte ferroptosis, wherein the pharmacological modification of dysregulated GPX4 and ALOX15-launched lipid peroxidation was responsible for underlying medicinal effects as molecular basis.

2.
Molecules ; 26(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684838

ABSTRACT

The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60-42.02%), ß-pinene (10.03-18.82%), camphene (1.56-10.95%), borneol (0.50-7.71%), δ-cadinene (1.52-7.06%), and ß-elemene (1.86-4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries.


Subject(s)
Kadsura/chemistry , Oils, Volatile/analysis , Oils, Volatile/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Acetylcholinesterase/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/pharmacology , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/pharmacology , Flame Ionization/methods , Microbial Sensitivity Tests/methods , Oils, Volatile/pharmacology , Plant Oils/analysis , Plant Oils/chemistry , Plant Oils/pharmacology , Sesquiterpenes/chemistry , Staphylococcus aureus/drug effects
3.
Int Immunopharmacol ; 91: 107308, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383448

ABSTRACT

Bicyclol, an innovative chemical drug with proprietary intellectual property rights in China, is based on derivative of traditional Chinese medicine (TCM) Schisandra chinensis (Wuweizi) of North. Mounting data has proved that bicyclol has therapeutic potential in various pathological conditions in liver. In this narrative review, we provide the first summary of pharmacological activities, pharmacokinetic characteristics and toxicity of bicyclol, and discuss future research perspectives. Our results imply that bicyclol has a wide spectrum of pharmacological properties, including anti-viral, anti-inflammatory, immuno-regulatory, anti-oxidative, antisteatotic, anti-fibrotic, antitumor, cell death regulatory effects and modulation of heat shock proteins. Pharmacokinetic studies have indicated that bicyclol is the main substrate of CYP3A/2E1. Additionally, no obvious drug interactions have been found when bicyclol is administered simultaneously with other prescriptions. Furthermore, the results of chronic toxicity have strongly addressed that bicyclol has no noticeable toxic effects on all biochemical indices and pathological examinations of the main organs. In view of good pharmacological actions and safety, bicyclol is anticipated to be a potential candidate for various liver diseases, including acute liver injury, fulminant hepatitis, non-alcoholic fatty liver disease, fibrosis and hepatocellular carcinoma. Further studies are therefore required to delineate its molecular mechanisms and targets to confer this well-designed drug a far greater potency. We hope that bicyclol-based therapeutics for liver diseases might be broadly used in clinical practice worldwide.


Subject(s)
Biphenyl Compounds/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Liver Diseases/drug therapy , Liver/drug effects , Medicine, Chinese Traditional , Animals , Biphenyl Compounds/adverse effects , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacokinetics , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/pharmacokinetics , Humans , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Diseases/diagnosis , Liver Diseases/immunology , Liver Diseases/metabolism , Treatment Outcome
4.
Pharmacol Res ; 160: 105170, 2020 10.
Article in English | MEDLINE | ID: mdl-32877694

ABSTRACT

Scoparone is an active and efficious ingredient of herbal medicine Artemisia capillaris Thunb, which has been used clinically in traditional Chinese medicine formula (e.g. Yin-Chen-Hao decoction) for the treatment of hepatic dysfunction, cholestasis and jaundice for over thousand years. More recently, scoparone has received increasing attention due to its multiple properties. In this comprehensive review, we provide the first summary of the pharmacological effects and pharmacokinetic characteristics of scoparone, and discuss future research prospects. The results implicated that scoparone possesses a wide spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anti-apoptotic, anti-fibrotic and hypolipidemic properties. Pharmacokinetic studies have addressed that isoscopoletin and scopoletin are major primary metabolites of scoparone. Moreover, hepatic dysfunction might promote bioavailability of scoparone due to limited intrinsic clearance. On the other hand, the bioavailability of multi-component including scoparone in certain TCM formula can also be enhanced by applying this formula at a high dose on account of their interacted effects. In view of good pharmacological actions, scoparone is anticipated to be a potential drug candidate for various liver diseases, such as acute liver injury, fulminant hepatitis, alcohol-induced hepatotoxicity, non-alcoholic fatty liver disease and fibrosis. However, further studies are warranted to clarify its molecular mechanisms and targets, elucidate its toxicity, and identify its interplay with other active ingredients of classical TCM formula in clinical settings.


Subject(s)
Coumarins/therapeutic use , Liver Diseases/drug therapy , Animals , Artemisia/chemistry , Coumarins/pharmacokinetics , Coumarins/pharmacology , Drugs, Chinese Herbal , Humans , Liver/drug effects , Liver Diseases/genetics , Medicine, Chinese Traditional , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics
5.
Pharmacol Res ; 159: 104945, 2020 09.
Article in English | MEDLINE | ID: mdl-32454225

ABSTRACT

Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis. For decades, genipin is the focus of studies as a versatile compound in the treatment of various pathogenic conditions. In particularly, Gardenia jasminoides Ellis has long been used in traditional Chinese medicine for the prevention and treatment of liver disease. Mounting experimental data has proved genipin possesses therapeutic potential for cholestatic, septic, ischemia/reperfusion-triggered acute liver injury, fulminant hepatitis and NAFLD. This critical review is a reflection on the valuable lessons from decades of research regarding pharmacological activities of genipin. Of note, genipin represents choleretic effect by potentiating bilirubin disposal and enhancement of genes in charge of the efflux of a number of organic anions. The anti-inflammatory capability of genipin is mediated by suppression of the production and function of pro-inflammatory cytokines and inflammasome. Moreover, genipin modulates various transcription factor and signal transduction pathway. Genipin appears to trigger the upregulation of several key genes encoding antioxidant and xenobiotic-metabolizing enzymes. Furthermore, the medicinal impact of genipin extends to modulation of regulated cell death, including autophagic cell death, apoptosis, necroptosis and pyroptosis, and modulation of quality of cellular organelle. Another crucial effect of genipin appears to be linked to dual role in targeting uncoupling protein 2 (UCP2). As a typical UCP2-inhibiting compound, genipin could inhibit AMP-activated protein kinase or NF-κB in circumstance. On the contrary, reactive oxygen species production and cellular lipid deposits mediated by genipin through the upregulation of UCP2 is observed in liver steatosis, suggesting the precise role of genipin is disease-specific. Collectively, we comprehensively summarize the mechanisms and pathways associated with the hepatoprotective activity of genipin and discuss potential toxic impact. Notably, our focus is the direct medicinal effect of genipin itself, whereas its utility as a crosslinking agent in tissue engineering is out of scope for the current review. Further studies are therefore required to disentangle these complicated pharmacological properties to confer this natural agent a far greater potency.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Cholagogues and Choleretics/pharmacology , Iridoids/pharmacology , Liver/drug effects , Massive Hepatic Necrosis/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Anti-Inflammatory Agents/toxicity , Antioxidants/toxicity , Cell Death/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cholagogues and Choleretics/toxicity , Humans , Iridoids/toxicity , Liver/metabolism , Liver/pathology , Massive Hepatic Necrosis/metabolism , Massive Hepatic Necrosis/pathology , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Uncoupling Protein 2/metabolism
6.
Oxid Med Cell Longev ; 2019: 3729051, 2019.
Article in English | MEDLINE | ID: mdl-31885784

ABSTRACT

Genipin, as the most effective ingredient of various traditional medications, encompasses antioxidative, anti-inflammatory, and antibacterial capacities. More recently, it is suggested that genipin protects against septic liver damage by restoring autophagy. The purpose of the current study was to explore the protective effect of genipin against carbon tetrachloride- (CCl4-) induced acute liver injury (ALI) and its underlying molecular machinery. Our results indicated that treatment with genipin significantly reduced CCl4-induced hepatotoxicity by ameliorating histological liver changes, decreasing the aspartate aminotransferase and alanine transaminase levels, alleviating the secretion of inflammatory cytokines, and promoting autophagic flux. Moreover, genipin effectively induced the conversion of LC3 and inhibition of p62 accumulation. The liver expressions of ATG5, ATG7, and ATG12 were significantly increased by genipin pretreatment in the ALI mice model. This protective effect may be mediated by the inhibition of mTOR and the activation of p38 MAPK signaling pathways. Meanwhile, genipin attenuated CCl4-induced inflammatory response by inhibiting the NF-κB and STAT3 signaling pathway. In addition, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) or inhibition of p38 MAPK by SB203580 abolished the hepatoprotective effect of genipin. Taken together, our study implicates that genipin has a protective potential against CCl4-induced hepatotoxicity, which might be strongly associated with the induction of autophagy and the attenuation of inflammatory response.


Subject(s)
Autophagy/drug effects , Carbon Tetrachloride/adverse effects , Chemical and Drug Induced Liver Injury/drug therapy , Iridoids/therapeutic use , Liver/drug effects , Medicine, Traditional/methods , Rubiaceae/chemistry , Animals , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Inflammation/pathology , Iridoids/pharmacology , Male , Mice
7.
Pharmacogn Mag ; 12(48): 282-287, 2016.
Article in English | MEDLINE | ID: mdl-27867270

ABSTRACT

BACKGROUND: Sesquiterpenoids, such as tussilagone, has effects of raising blood pressure, antiplatelet aggregation, and anti-inflammation activities, which is regarded as index compound for quality control of Tussilago farfara L. OBJECTIVE: This study was aimed to obtain an effective method for fast isolation of sesquiterpenoids from T. farfara L. by high-speed counter-current chromatography (HSCCC). MATERIALS AND METHODS: A solvent optimization method for HSCCC was presented, i.e., the separation factors of compounds after the K values of solvent system should be investigated. RESULTS: A ternary solvent system of n-hexane:methanol:water (5:8:2, v/v/v) was selected and applied for the HSCCC, and 56 mg of tussilagone (2) was isolated from T. farfara L., along with two other sesquiterpenoids 5.6 mg of 2,2-dimethyl-6-acetylchromanone (1) and 22 mg of 14-acetoxy-7 ß-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methylbutyryloxy)-notonipetranone (3) by HSCCC with high purities. Their chemical structures were elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance experiments. CONCLUSION: These results offered an efficient strategy for preparation of potentially health-relevant phytochemicals from T. farfara L., which might be used for further chemical research and pharmacological studies by preparative HSCCC. SUMMARY: The real separation efficiency has been verified by analytical HSCCC.A solvent optimization method for HSCCC was presented and applied to separate and prepare active compounds.A method for rapid and effective separation of target compound Tussilagone with high yield and purity from the flower buds of Tussilago farfara.Two other compounds 2,2-Dimethyl-6-acetylchromanone and 14-acetoxy-7ß-(3'-ethyl cis-crotonoyloxy) -lα- (2'-methylbutyryloxy). notonipetranone hasbeen obtained with high purities from flower buds of Tussilago farfara. Abbreviations used: HSCCC: High-Speed Counter-Current Chromatography; LC-MS: Liquid Chromatograph-Mass Spectrometer; NMR: Nuclear Magnetic Resonance; TCM: Traditional Chinese Medicine; HPLC: High Performance Liquid Chromatography; ESI-MS: Electrospray Ionization Mass Spectrometry; PE: petroleum ether.

8.
ACS Appl Mater Interfaces ; 8(7): 4424-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26821997

ABSTRACT

Near-infrared (NIR) dyes functionalized magnetic nanoparticles (MNPs) have been widely applied in magnetic resonance imaging (MRI), NIR fluorescence imaging, drug delivery, and magnetic hyperthermia. However, the stability of MNPs and NIR dyes in water is a key problem to be solved for long-term application. In this study, a kind of superstable iron oxide nanoparticles was synthesized by a facile way, which can be used as T1 and T2 weighted MRI contrast agent. IR820 was grafted onto the surface of nanoparticles by 6-amino hexanoic acid to form IR820-CSQ-Fe conjugates. Attached IR820 showed increased stability in water at least for three months and an enhanced ability of singlet oxygen production of almost double that of free dyes, which will improve its efficiency for photodynamic therapy. Meanwhile, the multispectral optoacoustic tomography (MSOT) and NIR imaging ability of IR820-CSQ-Fe will greatly increase the accuracy of disease detection. All of these features will broaden the application of this material as a multimodal theranostic platform.


Subject(s)
Drug Delivery Systems , Indocyanine Green/analogs & derivatives , Molecular Imaging/methods , Theranostic Nanomedicine , Cell Line, Tumor , Contrast Media/administration & dosage , Ferric Compounds/administration & dosage , Ferric Compounds/chemistry , Humans , Hyperthermia, Induced/methods , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/chemistry , Multimodal Imaging/methods , Optical Imaging/methods , Photochemotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL