Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Country/Region as subject
Publication year range
1.
Heliyon ; 10(3): e24586, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322899

ABSTRACT

Background: Advancing age is one of the independent risk factors for cardiovascular disorders. The Compendium of Materia Medica, a classic book on traditional Chinese medicine, states that ginseng "harmonizes the five internal organs, calming the spirit and prolonging the years of life." Considered one of the primary bioactive compounds derived from Panax ginseng, ginsenoside Rb1 (g-Rb1) has been scientifically suggested to possess anti-senescence efficacy. More research is needed to explore the vascular pharmacological activity and potential clinical application value of g-Rb1. Aims of the study: Our previous study demonstrated that g-Rb1 could mitigate cellular senescence via the SIRT1/eNOS pathway. This study was performed to explore the exact mechanisms by which g-Rb1 modulates the SIRT1/eNOS pathway. Materials and methods: We used human primary umbilical vein endothelial cells (HUVECs) to establish a replicative ageing model. Real-time (RT‒PCR), western blotting, small interfering RNA (siRNA), and immunoprecipitation were conducted to detect the effect of g-Rb1 on the SIRT1/caveolin-1/eNOS axis. Results: G-Rb1 increased NO production and alleviated replicative senescence of HUVECs. The application of g-Rb1 elevated the mRNA and protein abundance of both SIRT1 and eNOS while concomitantly suppressing the expression of caveolin-1. Inhibition of SIRT1 and eNOS by siRNAs suppressed the anti-senescence function of g-Rb1, while caveolin-1 siRNA could enhance it. G-Rb1 decreased the acetylation level of caveolin-1 and increased NO production, which was suppressed by SIRT1 siRNA. Both g-Rb1 and caveolin-1 siRNA could reduce the acetylation level of eNOS and increase NO production. Conclusion: G-Rb1 prevents age-related endothelial senescence by modulating the SIRT1/caveolin-1/eNOS signaling pathway.

2.
Food Chem ; 437(Pt 2): 137917, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37944391

ABSTRACT

A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.


Subject(s)
Organophosphates , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Organophosphates/analysis , Esters/analysis , Ultrasonics , Lactuca , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid
3.
Microbiome ; 11(1): 266, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38008755

ABSTRACT

BACKGROUND: Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS: Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION: Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Polystyrenes/metabolism , Polystyrenes/toxicity , Zebrafish , Vitamin D/metabolism , Nanoparticles/metabolism , Nanoparticles/toxicity , Microplastics/toxicity , Microplastics/metabolism , Serotonin/metabolism , Virome , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Brain , Cytochromes/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4187-4200, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802787

ABSTRACT

This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1ß, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1ß, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Ginsenosides , Humans , Tumor Necrosis Factor-alpha , Caspase 3 , Matrix Metalloproteinase 9 , Interleukin-6 , Molecular Docking Simulation , Network Pharmacology , Reactive Oxygen Species , Tandem Mass Spectrometry , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Capsules , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
5.
Biomedicines ; 11(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37893242

ABSTRACT

Triptolide (TP) is an epoxy diterpene lactone compound isolated and purified from the traditional Chinese medicinal plant Tripterygium wilfordii Hook. f., which has been shown to inhibit the proliferation of hepatocellular carcinoma. However, due to problems with solubility, bioavailability, and adverse effects, the use and effectiveness of the drug are limited. In this study, a transferrin-modified TP liposome (TF-TP@LIP) was constructed for the delivery of TP. The thin-film hydration method was used to prepare TF-TP@LIP. The physicochemical properties, drug loading, particle size, polydispersity coefficient, and zeta potential of the liposomes were examined. The inhibitory effects of TF-TP@LIP on tumor cells in vitro were assessed using the HepG2 cell line. The biodistribution of TF-TP@LIP and its anti-tumor effects were investigated in tumor-bearing nude mice. The results showed that TF-TP@LIP was spherical, had a particle size of 130.33 ± 1.89 nm and zeta potential of -23.20 ± 0.90 mV, and was electronegative. Encapsulation and drug loading were 85.33 ± 0.41% and 9.96 ± 0.21%, respectively. The preparation was stable in serum over 24 h and showed biocompatibility and slow release of the drug. Flow cytometry and fluorescence microscopy showed that uptake of TF-TP@LIP was significantly higher than that of TP@LIP (p < 0.05), while MTT assays indicated mean median inhibition concentrations (IC50) of TP, TP@LIP, and TF-TP@ of 90.6 nM, 56.1 nM, and 42.3 nM, respectively, in HepG2 cell treated for 48 h. Real-time fluorescence imaging indicated a significant accumulation of DiR-labeled TF-TP@LIPs at tumor sites in nude mice, in contrast to DiR-only or DiR-labeled, indicating that modification with transferrin enhanced drug targeting to the tumor tissues. Compared with the TP and TP@LIP groups, the TF-TP@LIP group had a significant inhibitory effect on tumor growth. H&E staining results showed that TF-TP@LIP inhibited tumor growth and did not induce any significant pathological changes in the heart, liver, spleen, and kidneys of nude mice, with all liver and kidney indices within the normal range, with no significant differences compared with the control group, indicating the safety of the preparation. The findings indicated that modification by transferrin significantly enhanced the tumor-targeting ability of the liposomes and improved their anti-tumor effects in vivo. Reducing its distribution in normal tissues and decreasing its toxic effects suggest that the potential of TF-TP@LIP warrants further investigation for its clinical application.

6.
BMJ Open ; 13(6): e068368, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280035

ABSTRACT

INTRODUCTION: Infertility is a focal issue in public health and affects human reproduction and survival. Notably, an increasing number of studies in recent decades have found that sperm DNA integrity plays a critical role in the development of healthy embryos. Among the multiple pathogenic factors of sperm DNA fragmentation, oxidative stress has proven to be predominant. Coenzyme Q10 supplementation, which has been used for the treatment of male infertility, has shown good clinical efficacy due to its oxidation resistance, but its efficacy as measured by the sperm DNA fragmentation index remains controversial. To address this issue, we will perform a systematic review and meta-analysis to evaluate the efficacy of coenzyme Q10 for male infertility patients with a high sperm DNA fragmentation index. METHODS AND ANALYSIS: The PubMed, Embase, Cochrane Central Register of Studies and Web of Science databases will be comprehensively searched from inception to 31 December 2022 to identify relevant studies published in the English language using appropriate search strategies. The search terms will be derived from the following concepts: sperm DNA fragmentation, coenzyme Q10 and randomised controlled trials. Two review stages, that is, title and abstract screening and full-text screening, will be performed by two reviewers. The risk of bias, publication bias and evidence grade of the included studies will be assessed using a standardised protocol. Data will be used to calculate effect sizes. Heterogeneity among the studies will be evaluated graphically. Subgroup analysis and sensitivity analysis will be performed if necessary to validate the results. ETHICS AND DISSEMINATION: No ethical approval will be needed, as there will be no participants in this study. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to disseminate the findings through publication and conference presentation. PROSPERO REGISTRATION NUMBER: CRD42022293340.


Subject(s)
Infertility, Male , Semen , Humans , Male , Dietary Supplements , DNA Fragmentation , Infertility, Male/drug therapy , Infertility, Male/genetics , Meta-Analysis as Topic , Spermatozoa , Systematic Reviews as Topic
7.
Front Pharmacol ; 14: 1087654, 2023.
Article in English | MEDLINE | ID: mdl-36969877

ABSTRACT

Background: Curcumae Radix (CW) is traditionally used to treat primary dysmenorrea (PD). However, the mechanisms of action of CW in the treatment of PD have not yet been comprehensively resolved. Objective: To investigate the therapeutic effects of CW on PD and its possible mechanisms of action. Methods: An isolated uterine spastic contraction model induced by oxytocin was constructed in an in vitro pharmacodynamic assay. An animal model of PD induced by combined estradiol benzoate and adrenaline hydrochloride-assisted stimulation was established. After oral administration of CW, a histopathological examination was performed and biochemical factor levels were measured to evaluate the therapeutic effect of CW on PD. The chemical compositions of the drug-containing serum and its metabolites were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Network pharmacology and serum untargeted metabolomics were used to predict the mechanism of CW treatment for PD, and the predicted results were validated by RT-qPCR, WB, and targeted fatty acid (FA) metabolism. Results: In vitro, CW can relax an isolated uterus by reducing uterine motility. In vivo, the results showed that CW attenuated histopathological damage in the uterus and regulated PGF2α, PGE2, ß-EP, 5-HT, and Ca2+ levels in PD rats. A total of 66 compounds and their metabolites were identified in the drug-containing serum, and the metabolic pathways of these components mainly included hydrogenation and oxidation. Mechanistic studies showed that CW downregulated the expression of key genes in the 5-HTR/Ca2+/MAPK pathway, such as 5-HTR2A, IP3R, PKC, cALM, and ERK. Similarly, CW downregulated the expression of key proteins in the 5-HTR/Ca2+/MAPK pathway, such as p-ERK/ERK. Indirectly, it ameliorates the abnormal FA metabolism downstream of this signaling pathway in PD rats, especially the metabolism of arachidonic acid (AA). Conclusion: The development of PD may be associated with the inhibition of the 5-HTR/Ca2+/MAPK signaling pathway and FA metabolic pathways, providing a basis for the subsequent exploitation of CW.

8.
ACS Nano ; 17(4): 3574-3586, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36602915

ABSTRACT

With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 µg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Humans , Carrier Proteins , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Profiling , Phosphorus , Nanostructures
9.
Crit Rev Food Sci Nutr ; 63(24): 7016-7024, 2023.
Article in English | MEDLINE | ID: mdl-35187987

ABSTRACT

Food allergy is a pathological immune reaction triggered by normal innocuous dietary proteins. Soybean is widely used in many food products and has long been recognized as a source of high-quality proteins. However, soybean is listed as one of the 8 most significant food allergens. The prevalence of soybean allergy is increasing worldwide and impacts the quality of life of patients. Currently, the only strategy to manage food allergy relies on strict avoidance of the offending food. Nutritional supplementation is a new prevention strategy which is currently under evaluation. Selenium (Se), as one of the essential micronutrients for humans and animals, carries out biological effects through its incorporation into selenoproteins. The use of interventions with micronutrients, like Se, might be an interesting new approach. In this review we describe the involvement of Se in a variety of processes, including maintaining immune homeostasis, preventing free radical damage, and modulating the gut microbiome, all of which may contribute to in both the prevention and treatment of food allergy. Se interventions could be an interesting new approach for future treatment strategies to manage soybean allergy, and food allergy in general, and could help to improve the quality of life for food allergic patients.


Subject(s)
Food Hypersensitivity , Selenium , Animals , Humans , Glycine max , Quality of Life , Allergens , Dietary Supplements , Micronutrients , Immunoglobulin E
10.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5235-5245, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472030

ABSTRACT

This study analyzed the main chemical components of Zhuru Decoction via ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS), and then predicted the mechanism of Zhuru Decoction in clearing heat, resolving phlegm, detoxifying, and treating vomiting and alcohol-related vomiting caused by heat in stomach based on network pharmacology. The gradient elution was conducted in Agilent ZORBAX extend-C_(18) column(2.1 mm×100 mm, 1.8 µm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) at a flow rate of 0.3 mL·min~(-1) and the column temperature of 35 ℃. The MS adopted the positive and negative ion mode of electrospray ionization(ESI), and the data were collected in the scanning range of m/z 100-1 500. A total of 98 compounds in Zhuru Decoction were identified via BATMAN, SYMMAP, TCMSP, and relevant literature, including 36 flavonoids, 7 triterpenoids, 8 gingerols, 20 organic acids, 5 amino acids, and 22 other compounds. On the basis of the available studies, 9 components were selected as index components, and the protein-protein interaction(PPI) network of the common targets was established with STRING 11.0. Finally, 10 core targets associated with the pharmacodynamic effect were screened out. This study established the UPLC-Q-TOF-MS/MS method for identifying the chemical components in the classic prescription Zhuru Decoction, and employed network pharmacology to explore the core targets of its efficacy, which provided a refe-rence for the quality control and the research of the pharmacodynamic substances of Zhuru Decoction.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Vomiting
11.
Chem Biodivers ; 19(10): e202200361, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36017755

ABSTRACT

BACKGROUND: Curcumae Radix (CW) is traditionally used to treat dysmenorrhea caused by uterine spasm. However, the changes of its composition and anti-uterine spasms during vinegar processing and the mechanism in treating dysmenorrhea are not clear. OBJECTIVE: To elucidate the changes of anti-uterine spasm and its substance basis, and the mechanism of treating dysmenorrhea before and after vinegar processing. METHODS: The uterine spasm contraction model was established, and the uterine activity and its inhibition rate were calculated to evaluate the differences. The main chemical constituents of CW were quickly analyzed by UPLC-Q-TOF-MS/MS technology, and the differences between them were explored by multivariate statistical analysis. Then, the regulatory network of "active ingredients-core targets-signal pathways" related to dysmenorrhea was constructed by using network pharmacology, and the combination between differential active components and targets was verified by molecular docking. RESULTS: CW extract relaxed the isolated uterine by reducing the contractile tension, amplitude, and frequency. Compared with CW, the inhibitory effect of vinegar products was stronger, and the inhibition rate was 70.08 %. 39 compounds were identified from CW and 13 differential components were screened out (p<0.05). Network pharmacology screened 11 active components and 32 potential targets, involving 10 key pathways related to dysmenorrhea. The results of molecular docking showed that these differentially active components had good binding activity to target. CONCLUSION: It was preliminarily revealed that CW could treat dysmenorrhea mainly through the regulation of inflammatory reaction, relaxing smooth muscle and endocrine by curcumenone, 13-hydroxygermacrone, (+)-cuparene, caryophyllene oxide, zederone, and isocurcumenol.


Subject(s)
Curcuma , Drugs, Chinese Herbal , Female , Humans , Acetic Acid/chemistry , Acetic Acid/therapeutic use , Computational Biology , Curcuma/chemistry , Drugs, Chinese Herbal/chemistry , Dysmenorrhea/drug therapy , Molecular Docking Simulation , Plant Extracts/pharmacology , Spasm , Tandem Mass Spectrometry
12.
Ecotoxicol Environ Saf ; 242: 113864, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35849904

ABSTRACT

An in-depth understanding of the ecological and health risks posed by heavy metals originating from various pollution sources is critical for foresighted soil-quality management. Based on 220 grid samples (2 × 2 km) analyzed for eight heavy metals (Cd, Hg, As, Pb, Cr, Ni, Cu, and Zn) in the Chenshui (CS) watershed of Hunan Province, China, we applied an integrated approach for identifying and apportioning pollution sources of soil heavy metals and exploring their source-specific pollution risks. This approach consists of three sequential steps: (1) source identification by combining the positive matrix factorization model with geostatistical analysis; (2) quantification of ecological, carcinogenic, and non-carcinogenic risks in a source-specific manner; (3) prioritization of sources in a holistic manner, considering both ecological risks and human health risks. Cd (68.0%) and Hg (13.3%) dominated the ecological risk in terms of ecological risk index; As dominated the non-carcinogenic health risk in terms of total hazard index (THI; adults: 84.8%, children: 84.7%) and the carcinogenic health risk in terms of total carcinogenic risk index (TCRI; adults: 69.0%, children: 68.8%). Among three exposure routes, oral ingestion (89.4-95.2%) was the predominant route for both adults and children. Compared with adults (THI = 0.41, TCRI = 7.01E-05), children (THI = 2.81, TCRI = 1.22E-04) had greater non-carcinogenic and carcinogenic risks. Four sources (F1-4) were identified for the CS watershed: atmospheric deposition related to coal-burning and traffic emissions (F1, 18.0%), natural sources from parent materials (F2, 34.3%), non-ferrous mining and smelting industry (F3, 37.9%), and historical arsenic-related activity (F4, 9.8%). The F3 source contributed the largest (45.2%) to the ecological risks, and the F4 source was the predominant contributor to non-carcinogenic (52.4%) and carcinogenic (64.6%) risks. The results highlight the importance of considering legacy As pollution from abandoned industries when developing risk reduction strategies in this region. The proposed methodology for source and risk identification and apportionment formulates the multidimensional concerns of pollution and the various associated risks into a tangible decision-making process to support soil pollution control.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Adult , Cadmium/analysis , Child , China , Environmental Monitoring , Environmental Pollution/analysis , Humans , Mercury/analysis , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
13.
Kidney Int ; 102(3): 521-535, 2022 09.
Article in English | MEDLINE | ID: mdl-35598813

ABSTRACT

Bruceine A is a natural quassinoid compound extracted from the fruit of the Traditional Chinese Medicine Brucea javanica (L.) Merr. that has various types of various biological activities. However, whether the compound has a protective effect on diabetic kidney disease remains unknown. Galectin-1 is actively involved in a variety of chronic inflammation-relevant human diseases including diabetic kidney disease. Here, we identified Bruceine A as a kidney protective molecule against a model of diabetic kidney disease in db/db mice with potent anti-inflammatory activity both in vitro and in vivo. Mechanistically, by selectively binding to the conserved carbohydrate-recognition domain of galectin-1 and disrupting the interaction between galectin-1 and the receptor for activated protein C kinase 1, Bruceine A was found to inhibit galectin-1-mediated inflammatory signal transduction under high glucose stress in rat mesangial HBZY-1 cells. Thus, our findings reveal Bruceine A as an unidentified galectin-1 inhibitor affording significant protection against diabetic kidney disease and may provide novel pharmacological therapeutics for the disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Quassins , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Diabetic Nephropathies/prevention & control , Galectin 1 , Humans , Mice , Quassins/chemistry , Quassins/pharmacology , Rats
14.
Zhongguo Zhong Yao Za Zhi ; 47(2): 306-312, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178972

ABSTRACT

A total of 18 batches of Zhuru Decoction samples were prepared. Chromatographic fingerprints were established for Zhuru Decoction and single decoction pieces, the content of which was then determined. The extraction rate ranges, content, and transfer rate ranges of puerarin, liquiritin, and glycyrrhizic acid, together with the common peaks and the similarity range of the fingerprints, were determined to clarify key quality attributes of Zhuru Decoction. The 18 batches of Zhuru Decoction samples had 25 common peaks and the fingerprint similarity higher than 0.95. Puerariae Lobatae Radix, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens had 21, 3, and 1 characteristic peaks, respectively. The 18 batches of samples showed the extraction rates within the range of 18.45%-25.29%. Puerarin had the content of 2.20%-3.07% and the transfer rate of 38.5%-45.9%; liquiritin had the content of 0.24%-0.85% and the transfer rate of 15.9%-37.5%; glycyrrhizic acid had the content of 0.39%-1.87% and the transfer rate of 16.2%-32.8%. In this paper, the quality value transmitting of substance benchmarks of Zhuru Decoction was analyzed based on chromatographic fingerprints, extraction rate, and the content of index components. A scientific and stable method was preliminarily established, which provided a scientific basis for the quality control and formulation development of Zhuru Decoction.


Subject(s)
Drugs, Chinese Herbal , Quality Control , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Glycyrrhizic Acid/analysis , Rhizome/chemistry
15.
Zhongguo Zhong Yao Za Zhi ; 47(2): 313-323, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178973

ABSTRACT

Following the preparation of substance benchmarks in Huanglian Decoction from 18 batches, the method for detecting their characteristic spectra was established to identify the similarity range and peak attribution. The content and transfer rate ranges of the index components coptisine, palmatine, berberine, liquiritin, glycyrrhizic acid, 6-gingerol, and cinnamaldehyde and the extraction amount were combined for analyzing the quality value transfer from the Chinese medicinal pieces to substance benchmarks and clarifying the key quality attributes of substance benchmarks in Huanglian Decoction. The results showed that the substance benchmarks in Huang-lian Decoction of 18 batches exhibited good similarity in characteristic spectra(all greater than 0.98). There were 17 characteristic peaks identified in the substance benchmarks of Huanglian Decoction, including 10 from Coptidis Rhizoma, 3 from Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle(processed with water), 1 from Zingiberis Rhizoma, and 3 from Cinnamomi Ramulus. The contents and average transfer rates of the index components were listed as follows: coptisine 2.20-6.46 mg·g~(-1) and 18.50%±2.93%; palmatine 3.03-8.13 mg·g~(-1) and 26.56%±4.69%; berberine 7.71-22.29 mg·g~(-1) and 17.34%±3.00%; liquiritin 0.88-2.18 mg·g~(-1) and 9.88%±4.88%; glycyrrhizic acid 1.83-4.44 mg·g~(-1) and 8.50%±3.72%; 6-gingerol 0.56-1.43 mg·g~(-1) and 11.36%±2.37%; cinnamaldehyde 1.55-3.48 mg·g~(-1) and 19.02%±4.36%. The extraction amount of the substance benchmarks from the 18 batches was controlled at 10.65%-13.88%. In this paper, the quality value transfer of substance benchmarks in Huanglian Decoction was analyzed based on the characteristic spectra, the index component contents and the extraction amount, which has provided a basis for the subsequent development of Huanglian Decoction and the quality control of its related preparations.


Subject(s)
Drugs, Chinese Herbal , Quality Control , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/standards
16.
J Biol Chem ; 298(1): 101430, 2022 01.
Article in English | MEDLINE | ID: mdl-34801553

ABSTRACT

Various plants use antimicrobial proteins/peptides to resist phytopathogens. In the potato, Solanum tuberosum, the plant-specific insert (PSI) domain of an aspartic protease performs this role by disrupting phytopathogen plasma membranes. However, the mechanism by which PSI selects target membranes has not been elucidated. Here, we studied PSI-induced membrane fusion, focusing on the effects of lipid composition on fusion efficiency. Membrane fusion by the PSI involves an intermediate state whereby adjacent liposomes share their bilayers. We found that increasing the concentration of negatively charged phosphatidylserine (PS) phospholipids substantially accelerated PSI-mediated membrane fusion. NMR data demonstrated that PS did not affect the binding between the PSI and liposomes but had seminal effects on the dynamics of PSI interaction with liposomes. In PS-free liposomes, the PSI underwent significant motion, which was suppressed on PS-contained liposomes. Molecular dynamics simulations showed that the PSI binds to PS-containing membranes with a dominant angle ranging from -31° to 30°, with respect to the bilayer, and is closer to the membrane surfaces. In contrast, PSI is mobile and exhibits multiple topological states on the surface of PS-free membranes. Taken together, our data suggested that PS lipids limit the motion of the anchored PSI, bringing it closer to the membrane surface and efficiently bridging different liposomes to accelerate fusion. As most phytopathogens have a higher content of negatively charged lipids as compared with host cells, these results indicate that the PSI selectively targets negatively charged lipids, which likely represents a way of distinguishing the pathogen from the host.


Subject(s)
Aspartic Acid Proteases , Phospholipids , Solanum tuberosum , Cell Membrane/metabolism , Liposomes/chemistry , Membrane Fusion , Phosphatidylserines/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Protein Domains , Solanum tuberosum/chemistry , Solanum tuberosum/metabolism
17.
Foods ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34828827

ABSTRACT

Selenium (Se)-enriched proteins are an important dietary source of Se for humans; however, only a few Se-enriched proteins have been identified. In the present study, we tested for potential antioxidant activity by Se-enriched soy protein, both in vitro and in vivo. Se-enriched soy protein isolate (S-SPI) was shown to have a higher free radical scavenging ability compared to ordinary soy protein isolate (O-SPI). Furthermore, Caco-2 cell viability was improved by S-SPI at low doses, whereas O-SPI did not. In addition, S-SPI was shown to inhibit oxidative stress via modulation of the NRF2-HO1 signaling pathway, upregulating the expression of downstream antioxidant enzymes (GPx, SOD). To further study the antioxidant capacity of S-SPI, BALB/c female mice were given oral gavages with 0.8 mL of S-SPI or O-SPI (5 g/kg/d, 20 g/kg/d and 40 g/kg/d) or saline as control. Hepatic GPx and SOD activity increased with increasing S-SPI dosage, but not with O-SPI. Taken together, our results suggest that Se-enriched soy protein has a high antioxidant ability and may be used as a dietary supplement for people with oxidative dam-age-mediated diseases.

18.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4083-4088, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467717

ABSTRACT

Processing of Chinese medicinals with vinegar is one of the characteristic processing techniques. Vinegar is vital for the quality of vinegar-processed decoction pieces. However, there have been no specified standards for adjuvants. Through consulting relevant literature and monographs, we comprehensively reviewed the historical evolution of processing with vinegar in records, selection and application of vinegar, and summarized the relevant standards and current status of vinegar as an adjuvant in China. According to the records in literature, vinegar is effective in activating blood, moving qi, dispersing blood stasis, removing toxin, promoting appetite, and nourishing the liver. Traditionally, rice vinegar is chosen in processing. Nowadays, the vinegar made from rice under solid-state fermentation should be chosen. At present, only food standards can be taken for reference for vinegar in the processing. Integrative and specific inspection indicators are lacking, so the standards for adjuvants need to be improved urgently. In addition, the inadequacy in quality control and management is also a major problem to be solved. Through literature research, we reviewed the historical evolution and research advance in vinegar to provide a reference for the standardization and further research of vinegar used in the Chinese medicinal processing.


Subject(s)
Drugs, Chinese Herbal , Oryza , Acetic Acid , Adjuvants, Pharmaceutic , Quality Control
19.
Nutrients ; 13(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34444651

ABSTRACT

Cow's milk allergy is a common food allergy in infants, and is associated with an increased risk of developing other allergic diseases. Dietary selenium (Se), one of the essential micronutrients for humans and animals, is an important bioelement which can influence both innate and adaptive immune responses. However, the effects of Se on food allergy are still largely unknown. In the current study it was investigated whether dietary Se supplementation can inhibit whey-induced food allergy in an animal research model. Three-week-old female C3H/HeOuJ mice were intragastrically sensitized with whey protein and cholera toxin and randomly assigned to receive a control, low, medium or high Se diet. Acute allergic symptoms, allergen specific immunoglobulin (Ig) E levels and mast cell degranulation were determined upon whey challenge. Body temperature was significantly higher in mice that received the medium Se diet 60 min after the oral challenge with whey compared to the positive control group, which is indicative of impaired anaphylaxis. This was accompanied by reductions in antigen-specific immunoglobulins and reduced levels of mouse mast cell protease-1 (mMCP-1). This study demonstrates that oral Se supplementation may modulate allergic responses to whey by decreasing specific antibody responses and mMCP-1 release.


Subject(s)
Diet , Milk Hypersensitivity/diet therapy , Selenomethionine/administration & dosage , Whey Proteins/immunology , Anaphylaxis/diet therapy , Anaphylaxis/immunology , Animal Feed , Animals , Biomarkers/blood , Cell Degranulation , Cells, Cultured , Chymases/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dermatitis, Allergic Contact/diet therapy , Dermatitis, Allergic Contact/immunology , Disease Models, Animal , Female , Immunoglobulin E/blood , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C3H , Milk Hypersensitivity/blood , Milk Hypersensitivity/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
J Ethnopharmacol ; 278: 114298, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34090913

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Kai Yu Zhong Yu recipe (KYZY) is a classic herbal formula in traditional Chinese medicine (TCM) that has been used to treat infertility associated with psychological stress for more than three hundred years. AIM OF THE STUDY: Psychological stress has major impacts on fertility, with variable outcomes depending on the nature, strength, and duration of the stress. Stress can directly disturb ovulation, oocyte quality, maturation, and embryo development. The aim of this study is to investigate the molecular mechanism by which KYZY improves oocyte developmental potential under psychological stress. MATERIALS AND METHODS: ICR female mice aged 4-5 weeks were randomly divided into five groups: control, stressed in the chronic unpredictable stress model (CUSM), and stressed plus KYZY treatment at 38.2 g/kg (KYZYH), 19.1 g/kg (KYZYM), or 9.6 g/kg (KYZYL). Ovary function was assessed by measuring serum levels of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH). Oocyte quality was evaluated in terms of reactive oxygen species (ROS) levels, apoptotic DNA fragmentation, and mitochondria distribution. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between groups and then further analyzed the DEGs for gene ontology (GO) term enrichment and protein-protein interactions. RESULTS: Mice in the stressed group had reduced serum E2, LH, and FSH as well as increased ROS levels, increased apoptosis, and disturbed mitochondria distribution in oocytes. Treatment with KYZY at all three doses reversed or ameliorated these negative effects of stress. DEG analysis identified 187 common genes between the two comparisons (stressed vs. control and KYZYM vs. stressed), 33 of which were annotated with six gene ontology (GO)'s biological process (BP) terms: cell differentiation, apoptosis, ATP synthesis, protein homo-oligomerization, neuron migration, and negative regulation of peptidase activity. Protein-protein interaction network analysis of DEGs identified key hub genes. Notably, the genes Atp5o and Cyc1 were both involved in the ATP synthesis and among the top three hub genes, suggesting that regulation of oocyte mitochondrial electron transport and ATP synthesis is important in the response to stress and also is a possible mechanism of action for KYZY. CONCLUSIONS: KYZY was effective in ameliorating the adverse effects of stress on oocyte competence, possibly by targeting the mitochondrial respiratory chain and ATP synthase.


Subject(s)
Drugs, Chinese Herbal , Phytotherapy , Stress, Psychological/drug therapy , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Body Weight/drug effects , Depression/drug therapy , Depression/etiology , Female , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Medicine, Chinese Traditional , Mice , Mice, Inbred ICR , Motor Activity , Oocytes/drug effects , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Random Allocation , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL