Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemosphere ; 287(Pt 2): 132127, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34488056

ABSTRACT

Gaseous selenium is of high saturated vapor pressure, making its retention in solid phases quite difficult during coal combustion. The selenium transformation from gaseous form into solid phases at low temperatures can be essential to control selenium emission. To understand the migration of SeO2 (g) on ash particles in the low-temperature zone, this study investigated the speciation of selenium in fly ash and simulated the physical retention of SeO2 (g) on fly ash. The results demonstrated that there was a large proportion of physically-bound Se in the fly ash of pulverized-coal-fired boiler (22.62 %-58.03%), while the content of physically-bound Se in fly ash of circulated fluidized-bed boiler was lower (∼6%). The physically-bound Se was formed through selenium condensation and physical adsorption. The decrease of temperature or the increase of cooling rate could promote the transformation of gaseous selenium to solid phase and the presence of HCl might suppress SeO2 transformation into Se in the condensation process. Meanwhile the compositions of fly ash had a great influence on the selenium adsorption process. Among typical coal-fired ash components, mullite showed the best performance in the selenium capture in the temperature range of 90-200 °C, contributing to the high content of physically-adsorbed selenium in PC fly ash. These findings provided new ideas for improving the removal rate of volatile selenium.


Subject(s)
Coal Ash , Selenium , Adsorption , Coal/analysis , Gases , Power Plants , Temperature
2.
Planta Med ; 83(17): 1361-1367, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28499304

ABSTRACT

Nine new and eleven known phorbol esters were isolated from an acetone extract of the seeds of Croton tiglium. Their structures were determined by extensive analysis of spectroscopic data. Eleven of these compounds were evaluated for their inhibition activity on human tumor cell lines HL-60 and lung carcinoma A549. 12-O-Tiglylphorbol-13-acetate (11), 12-O-(2-methyl)-butyrylphorbol-13-aetate (12), and 12-O-tiglylphorbol-13-isobutyrate (13) exhibited strong inhibition activity against both HL-60 and A549 cell lines with IC50 values ≤ 0.02 and ≤ 0.1 µg/mL, respectively. Compound 18 showed strong inhibition activity against the HL-60 cell line with an IC50 value of 0.02 µg/mL.


Subject(s)
Croton/chemistry , Phorbol Esters/chemistry , Phorbol Esters/isolation & purification , Plant Extracts/chemistry , A549 Cells , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Molecular Structure , Phorbol Esters/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL