Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nephrol Dial Transplant ; 39(2): 251-263, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37458807

ABSTRACT

BACKGROUND: To explore the cut-off values of haemoglobin (Hb) on adverse clinical outcomes in incident peritoneal dialysis (PD) patients based on a national-level database. METHODS: The observational cohort study was from the Peritoneal Dialysis Telemedicine-assisted Platform (PDTAP) dataset. The primary outcomes were all-cause mortality, major adverse cardiovascular events (MACE) and modified MACE (MACE+). The secondary outcomes were the occurrences of hospitalization, first-episode peritonitis and permanent transfer to haemodialysis (HD). RESULTS: A total of 2591 PD patients were enrolled between June 2016 and April 2019 and followed up until December 2020. Baseline and time-averaged Hb <100 g/l were associated with all-cause mortality, MACE, MACE+ and hospitalizations. After multivariable adjustments, only time-averaged Hb <100 g/l significantly predicted a higher risk for all-cause mortality {hazard ratio [HR] 1.83 [95% confidence interval (CI) 1.19-281], P = .006}, MACE [HR 1.99 (95% CI 1.16-3.40), P = .012] and MACE+ [HR 1.77 (95% CI 1.15-2.73), P = .010] in the total cohort. No associations between Hb and hospitalizations, transfer to HD and first-episode peritonitis were observed. Among patients with Hb ≥100 g/l at baseline, younger age, female, use of iron supplementation, lower values of serum albumin and renal Kt/V independently predicted the incidence of Hb <100 g/l during the follow-up. CONCLUSION: This study provided real-world evidence on the cut-off value of Hb for predicting poorer outcomes through a nation-level prospective PD cohort.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Peritonitis , Humans , Female , Prospective Studies , Peritoneal Dialysis/adverse effects , Renal Dialysis/adverse effects , Hemoglobins , Kidney Failure, Chronic/epidemiology , Peritonitis/etiology , Retrospective Studies
2.
J Am Soc Nephrol ; 28(9): 2607-2617, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28428331

ABSTRACT

Clinical studies have identified patients with nephrotic syndrome caused by mutations in genes involved in the biosynthesis of coenzyme Q10 (CoQ10), a lipid component of the mitochondrial electron transport chain and an important antioxidant. However, the cellular mechanisms through which these mutations induce podocyte injury remain obscure. Here, we exploited the striking similarities between Drosophila nephrocytes and human podocytes to develop a Drosophila model of these renal diseases, and performed a systematic in vivo analysis assessing the role of CoQ10 pathway genes in renal function. Nephrocyte-specific silencing of Coq2, Coq6, and Coq8, which are genes involved in the CoQ10 pathway that have been associated with genetic nephrotic syndrome in humans, induced dramatic adverse changes in these cells. In particular, silencing of Coq2 led to an abnormal localization of slit diaphragms, collapse of lacunar channels, and more dysmorphic mitochondria. In addition, Coq2-deficient nephrocytes showed elevated levels of autophagy and mitophagy, increased levels of reactive oxygen species, and increased sensitivity to oxidative stress. Dietary supplementation with CoQ10 at least partially rescued these defects. Furthermore, expressing the wild-type human COQ2 gene specifically in nephrocytes rescued the defective protein uptake, but expressing the mutant allele derived from a patient with COQ2 nephropathy did not. We conclude that transgenic Drosophila lines carrying mutations in the CoQ10 pathway genes are clinically relevant models with which to explore the pathogenesis of podocyte injury and could serve as a new platform to test novel therapeutic approaches.


Subject(s)
Alkyl and Aryl Transferases/genetics , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Ubiquinone/analogs & derivatives , Vitamins/pharmacology , Alkyl and Aryl Transferases/deficiency , Alleles , Animals , Autophagy/drug effects , Cell Line , Cells, Cultured , Disease Models, Animal , Gene Silencing , Humans , Mitochondria/ultrastructure , Mitophagy/drug effects , Organisms, Genetically Modified , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Ubiquinone/biosynthesis , Ubiquinone/genetics , Ubiquinone/pharmacology , Vitamins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL