Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
ACS Appl Mater Interfaces ; 15(48): 56314-56327, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983087

ABSTRACT

Photothermal therapy (PTT) using near-infrared (NIR) conjugated polymers as photosensitizers has exhibited enormous potential for tumor treatment. However, most NIR conjugated polymers have poor therapeutic efficacy due to their faint absorbance in the NIR region and low photothermal conversion efficiency (PCE). Herein, a valuable strategy for designing NIR polymeric photosensitizer PEKBs with an enhanced PCE accompanied by strong NIR absorbance is proposed by means of inserting TPA-AQ as a thermally activated delayed fluorescence unit into a polymeric backbone. In these PEKBs, PEKB-244 with the appropriate molar content of the TPA-AQ unit displays the strongest NIR absorbance and the highest PCE of 64.5%. Theoretical calculation results demonstrate that the TPA-AQ unit in the polymeric backbone can modulate the intramolecular charge transfer effects and the excited energy decay routes for generating higher heat. The prepared nanoparticles (PEKB-244 NPs) exhibit remarkable photothermal conversion capacities and great biocompatibility in aqueous solutions. Moreover, PEKB-244 NPs also show outstanding photothermal stability, displaying negligible changes in the absorbance within 808 nm irradiation of 1 h (800 mW cm-2). Both in vitro and in vivo experimental results further indicate that PEKB-244 NPs can substantially kill cancer cells under NIR laser irradiation. We anticipate that this novel molecular design strategy can be employed to develop excellent NIR photosensitizers for cancer photothermal therapy.


Subject(s)
Nanoparticles , Photothermal Therapy , Photosensitizing Agents , Polymers/pharmacology , Fluorescence , Phototherapy
2.
Biomaterials ; 301: 122261, 2023 10.
Article in English | MEDLINE | ID: mdl-37531775

ABSTRACT

Photothermal therapy (PTT) represents a promising noninvasive tumor therapeutic modality, but the current strategies for enhancing photothermal effect have been mainly based on promoting thermal relaxation or suppressing radiative dissipation process of excited energy, leaving little room for further improvement in photothermal effect. Herein, as a proof of concept, we report the thermophoresis-enhanced photothermal effect with pure organic Janus-like nanoparticles (Janus-like NPs) for PTT. The Janus-like NPs are eccentrically loaded with compactly J-aggregated photothermal molecules (DMA-BDTO), which show red-shifted absorption wavelength and inhibited radiative decay as compared to individual molecules. Under NIR irradiation, the asymmetric heat generation at particle surface endows Janus-like NPs the active thermophoresis, which further increases collisions and converts kinetic energy into thermal energy, and Janus-like NPs exhibit significantly elevated temperature as compared to conventional NPs with homogenously distributed DMA-BDTO. Both in vitro and in vivo results confirm such thermophoresis-enhanced photothermal effect for improved PTT. Our new strategy of thermophoresis-enhanced photothermal effect shall open new insights for improving photothermal-related tumor therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Photothermal Therapy , Hyperthermia, Induced/methods , Neoplasms/therapy , Cell Line, Tumor
3.
Small ; 18(17): e2200743, 2022 04.
Article in English | MEDLINE | ID: mdl-35347841

ABSTRACT

Developing effective therapies to fight against biofilm-associated infection is extremely urgent. The complex environment of biofilm forces the bacteria to evade the elimination of antibiotics, resulting in recalcitrant chronic infections. To address this issue, a cationic antibacterial agent based on phosphindole oxide (ß-PM-PIO) is designed and prepared. The unique molecular structure endows ß-PM-PIO with aggregation-induced emission feature and efficient singlet oxygen generation ability. ß-PM-PIO shows excellent visual diagnostic function to planktonic bacteria and biofilm. In addition, owing to the synergistic effect of phototoxicity and dark toxicity, ß-PM-PIO can achieve superb antibacterial and antibiofilm performance against Gram-positive bacteria with less potential of developing drug resistance. Notably, ß-PM-PIO also holds excellent anti-infection capacity against drug-resistant bacteria in vivo with negligible side effects. This work offers a promising platform to develop advanced antibacterial agents against multidrug-resistant bacterial infection.


Subject(s)
Bacterial Infections , Photosensitizing Agents , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Cations , Humans , Microbial Sensitivity Tests , Oxides/pharmacology , Photosensitizing Agents/pharmacology , Plankton
4.
ACS Nano ; 15(12): 20042-20055, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34846125

ABSTRACT

Synergistic phototherapy provides a promising strategy to conquer the hypoxia and heterogeneity of tumors and realize a better therapeutic effect than monomodal photodynamic therapy (PDT) or photothermal therapy (PTT). The development of efficient multifunctional organic phototheranostic systems still remains a challenging task. Herein, 9,10-phenanthrenequinone (PQ) with strong electron-withdrawing ability is conjugated with the rotor-type electron-donating triphenylamine derivatives to create a series of tailor-made photosensitizers. The highly efficient Type I reactive oxygen species generation and outstanding photothermal conversion capacity are tactfully integrated into these PQ-cored photosensitizers. The underlying photophysical and photochemical mechanisms of the combined photothermal and Type I photodynamic effects are deciphered by experimental and theoretical methods and are closely associated with the active intramolecular bond stretching vibration, facilitated intersystem crossing, and specific redox cycling activity of the PQ core. Both in vitro and in vivo evaluations demonstrate that the nanoagents fabricated by these PQ-based photosensitizers are excellent candidates for Type I photodynamic and photothermal combined antitumor therapy. This study thus broadens the horizon for the development of high-performance PTT/Type I PDT nanoagents for synergistic phototheranostic treatments.


Subject(s)
Nanoparticles , Photochemotherapy , Phenanthrenes , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Photothermal Therapy
5.
Adv Mater ; 33(22): e2101158, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33904232

ABSTRACT

Multimodal therapy is attracting increasing attention to improve tumor treatment efficacy, but generally requires various complicated ingredients combined within one theranostic system to achieve multiple functions. Herein, a multifunctional theranostic nanoplatform based on a single aggregation-induced-emission luminogen (AIEgen), DDTB, is designed to integrate near-infrared (NIR) fluorescence, photothermal, photodynamic, and immunological effects. Intravenously injected AIEgen-based nanoparticles can efficiently accumulate in tumors with NIR fluorescence to provide preoperative diagnosis. Most of the tumors are excised under intraoperative fluorescence navigation, whereafter, some microscopic residual tumors are completely ablated by photodynamic and photothermal therapies for maximally killing the tumor cells and tissues. Up to 90% of the survival rate can be achieved by this synergistic image-guided surgery and photodynamic and photothermal therapies. Importantly, the nanoparticles-mediated photothermal/photodynamic therapy plus programmed death-ligand 1 antibody significantly induce tumor elimination by enhancing the effect of immunotherapy. This theranostic strategy on the basis of a single AIEgen significantly improves the survival of cancer mice with maximized therapeutic outcomes, and holds great promise for clinical cancer treatment.


Subject(s)
Photochemotherapy , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Humans , Hyperthermia, Induced , Mice
6.
Theranostics ; 10(5): 2260-2272, 2020.
Article in English | MEDLINE | ID: mdl-32104506

ABSTRACT

Semiconducting polymers (SPs)-based dual photothermal therapy (PTT) obtained better therapeutic effect than single PTT due to its higher photothermal conversion efficiency. However, most dual PTT need to use two lasers for heat generation, which brings about inconvenience and limitation to the experimental operations. Herein, we report the development of "nanococktail" nanomaterials (DTPR) with 808 nm-activated image-guided dual photothermal properties for optimized cancer therapy. Methods: In this work, we co-encapsulated AIEgens (TPA-BDTO, T) and SPs (PDPPP, P) by using maleimide terminated amphiphilic polymer (DSPE-PEG2000-Mal, D), then further conjugated the targeting ligands (RGD, R) through "click" reaction. Finally, such dual PTT nanococktail (termed as DTPR) was constructed. Results: Once DTPR upon irradiation with 808 nm laser, near-infrared fluorescence from T could be partially converted into thermal energy through fluorescence resonance energy transfer (FRET) between T and P, coupling with the original heat energy generated by the photothermal agent P itself, thus resulting in image-guided dual PTT. The photothermal conversion efficiency of DTPR reached 60.3% (dual PTT), much higher as compared to its inherent photothermal effect of only 31.5% (single PTT), which was further proved by the more severe photothermal ablation in vitro and in vivo upon 808 nm laser irradiation. Conclusion: Such smart "nanococktail" nanomaterials could be recognized as a promising photothermal nanotheranostics for image-guided cancer treatment.


Subject(s)
Fluorescence Resonance Energy Transfer/instrumentation , Photothermal Therapy/methods , Theranostic Nanomedicine/methods , Animals , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Line, Tumor/radiation effects , Drug Delivery Systems/methods , Fluorescence , Hyperthermia, Induced/methods , Lasers , Ligands , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Polymers , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL