Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmacol Res ; 117: 82-93, 2017 03.
Article in English | MEDLINE | ID: mdl-27940204

ABSTRACT

Purinergic receptor P2x7 (P2x7R) is a key modulator of liver inflammation and fibrosis. The present study aimed to investigate the role of P2x7R in hepatic stellate cells activation. Lipopolysaccharide (LPS) or the conditioned medium (CM) from LPS-stimulated RAW 264.7 mouse macrophages was supplemented to human hepatic stellate cells, LX-2 for 24h and P2x7R selective antagonist A438079 (10µM) was supplemented to LX-2 cells 1h before LPS or CM stimulation. In addition LX-2 cells were primed with LPS for 4h and subsequently stimulated for 30min with 3mM of adenosine 5'-triphosphate (ATP). A438079 was supplemented to LX-2 cells 10min prior to ATP. Directly treated with LPS on LX-2 cells, mRNA expressions of interleukin (IL)-1ß, IL-18 and IL-6 were increased, as well as mRNA expressions of P2x7R, caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and NOD-like receptor family, pyrin domain containing 3 (NLRP3) mRNA. LPS also increased α-smooth muscle actin (α-SMA) and type I collagen mRNA expressions, as well as collagen deposition. Interestingly treatment of LX-2 cells with LPS-activated CM exhibited the greater increase of above factors than those in LX-2 cells directly treated with LPS. Pretreatment of A438079 on LX-2 cells stimulated by LPS or LPS-activated CM both suppressed IL-1ß mRNA expression. LPS combined with ATP dramatically increased protein synthesis and cleavage of IL-1ß and its mRNA level than those in HSC treated with LPS or ATP alone. Additionally LX-2 cells primed with LPS and subsequently stimulated for 30min with ATP greatly increased mRNA and protein expression of caspase-1, NLRP3 and P2x7R, as well as liver fibrosis markers, α-SMA and type I collagen. These events were remarkably suppressed by A438079 pretreatment. siRNA against P2x7R reduced protein expression of NLRP3 and α-SMA, and suppressed deposition and secretion of type I collagen. The involvement of P2X7R-mediated NLRP3 inflammasome activation in IL-1ß production of HSC might contribute to ECM deposition and suggests that blockade of the P2x7R-NLRP3 inflammasome axis represents a potential therapeutic target to liver fibrosis.


Subject(s)
Adenosine Triphosphate/metabolism , Hepatic Stellate Cells/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7/metabolism , Actins/metabolism , Animals , Caspase 1/metabolism , Cells, Cultured , Collagen Type I/metabolism , Cytokines/metabolism , Humans , Macrophages/metabolism , Mice , RAW 264.7 Cells , RNA, Messenger/metabolism , Signal Transduction/physiology
2.
Biochem Biophys Res Commun ; 400(1): 151-6, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20709020

ABSTRACT

Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and mRNA expression in cultured HUVECs in a concentration-dependent manner. Taken together, these results suggest that scutellarin promotes angiogenesis and may form a basis for angiogenic therapy.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Apigenin/pharmacology , Endothelium, Vascular/drug effects , Glucuronates/pharmacology , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Humans , Matrix Metalloproteinase 2/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-3/metabolism , Umbilical Veins/cytology , Umbilical Veins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL