Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Neurosci Lett ; 820: 137580, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38072028

ABSTRACT

Knee osteoarthritis (KOA) is characterized by debilitating pain. Electroacupuncture (EA), a traditional Chinese medical therapy, has shown promise in KOA pain management. This study investigated the therapeutic potential of EA in KOA and its impact on limbic system neural plasticity. Sixteen rats were randomly assigned into two groups: EA group and sham-EA group. EA or sham-EA interventions were administered at acupoints ST32 (Futu) and ST36 (Zusanli) for three weeks. Post-intervention resting-state fMRI was scanned, assessing parameters including Amplitude of low frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC) and nodal characterizations of network within limbic system. The results showed that EA was strategically directed towards the limbic system, resulting in discernible alterations in neural activity, FC, and network characteristics. Our findings demonstrate that EA had a significant impact on the limbic system neural plasticity in rats with KOA, presenting a novel nonpharmacological approach for KOA treatment.


Subject(s)
Electroacupuncture , Osteoarthritis, Knee , Rats , Animals , Electroacupuncture/methods , Osteoarthritis, Knee/therapy , Pain , Pain Management , Limbic System
2.
Brain Behav ; 13(9): e3174, 2023 09.
Article in English | MEDLINE | ID: mdl-37522806

ABSTRACT

INTRODUCTION: Tuina is currently one of the popular complementary and alternative methods of rehabilitation therapy. Tuina can improve patients' pain and mobility function. However, the underlying physiological mechanism remains largely unknown, which might limit its further popularization in clinical practice. The aim of this study is to explore the short-term and long-term changes in brain functional activity following Tuina intervention for peripheral nerve injury repair. METHODS: A total of 16 rats were equally divided into the intervention group and the control group. Rats in the intervention group received Tuina therapy applying on the gastrocnemius muscle of the right side for 4 months following sciatic nerve transection and immediate repair, while the control group received nerve transection and repair only. The block-design functional magnetic resonance imaging scan was applied in both groups at 1 and 4 months after the surgery. During the scan, both the injured and intact hindpaw was electrically stimulated according to a "boxcar" paradigm. RESULTS: When stimulating the intact hindpaw, the intervention group exhibited significantly lower activation in the somatosensory area, limbic/paralimbic areas, pain-regulation areas, and basal ganglia compared to the control group, with only the prefrontal area showing higher activation. After 4 months of sciatic nerve injury, the control group exhibited decreased motor cortex activity compared to the activity observed at 1 month, and the intervention group demonstrated stronger bilateral motor cortex activity compared to the control group. CONCLUSION: Tuina therapy on the gastrocnemius muscle of rats with sciatic nerve injury can effectively alleviate pain and maintain the motor function of the affected limb. In addition, Tuina therapy reduced the activation level of pain-related brain regions and inhibited the decreased activity of the motor cortex caused by nerve injury, reflecting the impact of peripheral stimulation on brain plasticity.


Subject(s)
Peripheral Nerve Injuries , Sciatic Neuropathy , Rats , Animals , Peripheral Nerve Injuries/therapy , Sciatic Nerve/injuries , Neuronal Plasticity/physiology , Pain
3.
J Pain Res ; 16: 1595-1605, 2023.
Article in English | MEDLINE | ID: mdl-37220632

ABSTRACT

Introduction: Osteoarthritis is a chronic, ongoing disease that affects patients, and pain is considered a key factor affecting patients, but the brain changes during the development of osteoarthritis pain are currently unclear. In this study, we used electroacupuncture (EA) to intervene the rat model of knee osteoarthritis and analyzed the changes in topological properties of brain networks using graph theory. Methods: Sixteen SD rat models of right-knee osteoarthritis with anterior cruciate ligament transection (ACLT) were randomly divided into electroacupuncture intervention group and control group. The electroacupuncture group was intervened on Zusanli (ST36) and Futu (ST32) for 20 min each time, five times a week for 3 weeks, while the control group was applied sham stimulation. Both groups were measured for pain threshold. The small-world properties and node properties of the brain network between the two groups after the intervention were statistically analyzed by graph theory methods. Results: The differences are mainly in the changes in node attributes between the two groups, such as degree centrality, betweenness centrality, and so on in different brain regions (P<0.05). Both groups showed no small-world characteristics in the brain networks of the two groups. The mechanical thresholds and thermal pain thresholds were significantly higher in the EA group than in the control group (P<0.05). Conclusion: The study demonstrated that electroacupuncture intervention enhanced the activity of nodes related to pain circuit and relieved pain in osteoarthritis, which provides a complementary basis for explaining the effect of electroacupuncture intervention on pain through graphical analysis of changes in brain network topological properties and helps to develop an imaging model for pain affected by electroacupuncture.

4.
Front Neurosci ; 17: 1081515, 2023.
Article in English | MEDLINE | ID: mdl-37113153

ABSTRACT

Objective: Aging has great influence on the clinical treatment effect of cerebrovascular diseases, and evidence suggests that the effect may be associated with age-related brain plasticity. Electroacupuncture is an effective alternative treatment for traumatic brain injury (TBI). In the present study, we aimed to explore the effect of aging on the cerebral metabolic mechanism of electroacupuncture to provide new evidence for developing age-specific rehabilitation strategies. Methods: Both aged (18 months) and young (8 weeks) rats with TBI were analyzed. Thirty-two aged rats were randomly divided into four groups: aged model, aged electroacupuncture, aged sham electroacupuncture, and aged control group. Similarly, 32 young rats were also divided into four groups: young model, young electroacupuncture, young sham electroacupuncture, and young control group. Electroacupuncture was applied to "Bai hui" (GV20) and "Qu chi" (LI11) for 8 weeks. CatWalk gait analysis was then performed at 3 days pre- and post-TBI, and at 1, 2, 4, and 8 weeks after intervention to observe motor function recovery. Positron emission computed tomography (PET/CT) was performed at 3 days pre- and post-TBI, and at 2, 4, and 8 weeks after intervention to detect cerebral metabolism. Results: Gait analysis showed that electroacupuncture improved the forepaw mean intensity in aged rats after 8 weeks of intervention, but after 4 weeks of intervention in young rats. PET/CT revealed increased metabolism in the left (the injured ipsilateral hemisphere) sensorimotor brain areas of aged rats during the electroacupuncture intervention, and increased metabolism in the right (contralateral to injury hemisphere) sensorimotor brain areas of young rats. Results: This study demonstrated that aged rats required a longer electroacupuncture intervention duration to improve motor function than that of young rats. The influence of aging on the cerebral metabolism of electroacupuncture treatment was mainly focused on a particular hemisphere.

5.
Front Neurosci ; 16: 958804, 2022.
Article in English | MEDLINE | ID: mdl-35992929

ABSTRACT

Motor dysfunction is the major sequela of ischemic stroke. Motor recovery after stroke has been shown to be associated with remodeling of large-scale brain networks, both functionally and structurally. Electroacupuncture (EA) is a traditional Chinese medicine application that has frequently been recommended as an alternative therapy for ischemic stroke and is reportedly effective for alleviating motor symptoms in patients. In the present study, the effect of EA on the alterations of functional resting state networks (RSNs) was explored after middle cerebral artery occlusion/reperfusion (MCAO/R) injury using resting-state functional MRI. Rats were randomly assigned to three groups, including the sham group, MCAO/R group and MCAO/R+EA group. The ladder rung walking test was conducted prior to and after modeling to assess behavioral changes. RSNs were identified based on the independent component analysis (ICA) performed on the fMRI data from groups. EA treatment effectively reduced the occurrence of contralateral forelimb foot faults. Furthermore, our results suggested the disrupted function of the whole-brain network following ischemic stroke and the modulatory effect of acupuncture. The sensorimotor network (SMN), interoceptive network (IN), default mode network (DMN) and salience network (SN) were related to the therapeutic effect of EA on stroke recovery. Collectively, our findings confirmed the effect of EA on motor function recovery after cerebral ischemia reperfusion and shed light on the assessment of EA intervention-induced effects on brain networks. This study provides neuroimaging evidence to explain the therapeutic effects of EA in ischemic stroke and will lay the groundwork for further studies.

6.
Neural Regen Res ; 17(4): 806-811, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34472479

ABSTRACT

Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, most studies are volume-based which may lead to inaccurate anatomical positioning of functional data. The methods that work on the cortical surface may be more sensitive than those using the full brain volume and thus be more suitable for map plasticity study. In this prospective cross-sectional study performed in Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China, 20 patients with osteonecrosis of the femoral head (12 males and 8 females, aged 56.80 ± 13.60 years) and 20 healthy controls (9 males and 11 females, aged 54.56 ± 10.23 years) were included in this study. Data of resting-state functional magnetic resonance imaging were collected. The results revealed that compared with healthy controls, compared with the healthy controls, patients with osteonecrosis of the femoral head (ONFH) showed significantly increased surface-based regional homogeneity (ReHo) in areas distributed mainly in the left dorsolateral prefrontal cortex, frontal eye field, right frontal eye field, and the premotor cortex and decreased surface-based ReHo in the right primary motor cortex and primary sensory cortex. Regions showing significant differences in surface-based ReHo values between the healthy controls and patients with ONFH were defined as the regions of interests. Seed-based functional connectivity was performed to investigate interregional functional synchronization. When the areas with decreased surface-based ReHo in the frontal eye field and right premotor cortex were used as the regions of interest, compared with the healthy controls, the patients with ONFH displayed increased functional connectivity in the right middle frontal cortex and right inferior parietal cortex and decreased functional connectivity in the right precentral cortex and right middle occipital cortex. Compared with healthy controls, patients with ONFH showed significantly decreased cortical thickness in the para-insular area, posterior insular area, anterior superior temporal area, frontal eye field and supplementary motor cortex and reduced volume of subcortical gray matter nuclei in the right nucleus accumbens. These findings suggest that hip disorder patients showed cortical plasticity changes, mainly in sensorimotor- and pain-related regions. This study was approved by the Medical Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (approval No. 2018-041) on August 1, 2018.

7.
Neural Regen Res ; 17(7): 1545-1555, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34916440

ABSTRACT

Electroacupuncture (EA) has been widely used for functional restoration after stroke. However, its role in post-stroke rehabilitation and the associated regulatory mechanisms remain poorly understood. In this study, we applied EA to the Zusanli (ST36) and Quchi (LI11) acupoints in rats with middle cerebral artery occlusion and reperfusion. We found that EA effectively increased the expression of brain-derived neurotrophic factor and its receptor tyrosine kinase B, synapsin-1, postsynaptic dense protein 95, and microtubule-associated protein 2 in the ischemic penumbra of rats with middle cerebral artery occlusion and reperfusion. Moreover, EA greatly reduced the expression of myelin-related inhibitors Nogo-A and NgR in the ischemic penumbra. Tyrosine kinase B inhibitor ANA-12 weakened the therapeutic effects of EA. These findings suggest that EA can improve neurological function after middle cerebral artery occlusion and reperfusion, possibly through regulating the activity of the brain-derived neurotrophic factor/tyrosine kinase B signal pathway. All procedures and experiments were approved by the Animal Research Committee of Shanghai University of Traditional Chinese Medicine, China (approval No. PZSHUTCM200110002) on January 10, 2020.

8.
Neural Regen Res ; 16(2): 388-393, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32859803

ABSTRACT

Massage therapy is an alternative treatment for chronic pain that is potentially related to brain plasticity. However, the underlying mechanism remains unclear. We established a peripheral nerve injury model in rats by unilateral sciatic nerve transection and direct anastomosis. The experimental rats were treated over the gastrocnemius muscle of the affected hindlimb with a customized massage instrument (0.45 N, 120 times/min, 10 minutes daily, for 4 successive weeks). Resting-state functional magnetic resonance imaging revealed that compared with control rats, the amplitude of low-frequency fluctuations in the sensorimotor cortex contralateral to the affected limb was significantly lower after sciatic nerve transection. However, amplitudes were significantly higher in the massage group than in a sham-massage group. These findings suggest that massage therapy facilitated adaptive change in the somatosensory cortex that led to the recovery of peripheral nerve injury and repair. This study was approved by the Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine of China (approval No. 201701001) on January 12, 2017.

9.
Front Neural Circuits ; 14: 35, 2020.
Article in English | MEDLINE | ID: mdl-32625066

ABSTRACT

Objective: The present study aimed to investigate the analgesic effect of electroacupuncture (EA) in neuropathic pain due to brachial plexus avulsion injury (BPAI) and related changes in the metabolic brain connectivity. Methods: Neuropathic pain model due to BPAI was established in adult female Sprague-Dawley rats. EA stimulations (2/15 Hz, 30 min/day, 5-day intervention followed by 2-day rest in each session) were applied to the fifth-seventh cervical "Jiaji" acupoints on the noninjured side from 1st to 12th weeks following BPAI (EA group, n = 8). Three control groups included sham EA (nonelectrical acupuncture applied to 3 mm lateral to the real "Jiaji" acupoints), BPAI-only, and normal rats (no particular intervention; eight rats in each group). Thermal withdrawal latency (TWL) of the noninjured forepaw was regularly tested to evaluate the threshold of thermalgesia. Small animal [fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) PET/CT scans of brain were conducted at the end of 4th, 12th, and 16th weeks to explore metabolic alterations of brain. Results: In the EA group, the TWL of the noninjured forepaw significantly decreased following BPAI and then increased following EA stimulation, compared with sham EA (P < 0.001). The metabolic brain connectivity among somatosensory cortex (SC), motor cortex (MC), caudate putamen (Cpu), and dorsolateral thalamus (DLT) in bilateral hemispheres decreased throughout the 16 weeks' observation in the BPAI-only group, compared with the normal rats (P < 0.05). In the EA group, the strength of connectivity among the above regions were found to be increased at the end of 4th week following BPAI modeling, decreased at 12th week, and then increased again at 16th week (P < 0.05). The changes in metabolic connectivity were uncharacteristic and dispersed in the sham EA group. Conclusion: The study revealed long-term and extensive changes of metabolic brain connectivity in EA-treated BPAI-induced neuropathic pain rats. Bilateral sensorimotor and pain-related brain regions were mainly involved in this process. It indicated that modulation of brain metabolic connectivity might be an important mechanism of analgesic effect in EA stimulation for the treatment of neuropathic pain.


Subject(s)
Brachial Plexus/injuries , Brain/metabolism , Electroacupuncture/methods , Nerve Net/metabolism , Neuralgia/metabolism , Neuralgia/therapy , Animals , Brain/diagnostic imaging , Female , Nerve Net/diagnostic imaging , Neuralgia/diagnostic imaging , Rats , Rats, Sprague-Dawley
10.
J Pain Res ; 13: 585-595, 2020.
Article in English | MEDLINE | ID: mdl-32273747

ABSTRACT

PURPOSE: Brain organisation is involved in the mechanism of neuropathic pain. Acupuncture is a common clinical practise in traditional Chinese medicine for the treatment of chronic pain. This study explored electroacupuncture's effects on brain metabolism following brachial plexus avulsion injury (BPAI)-induced pain. METHODS: A total of 32 female rats were randomised into a normal group, model group, sham electroacupuncture group, and electroacupuncture group. A pain model was included via right BPAI. The electroacupuncture intervention at cervical "Jiaji" points (C5-7) was performed for 11 weeks. The mechanical withdrawal threshold of the non-injured (left) forepaw was measured at the baseline and on days 3, 7, 14, 21, 28, 56, 84, and 112 subsequent to BPAI. Positron emission tomography (PET) was applied to explore metabolic changes on days 28, 84, and 112. RESULTS: After electroacupuncture, the mechanical withdrawal threshold of the left forepaws was significantly elevated and the effect persisted until 4 weeks after the intervention ceased (p<0.05 or p<0.001). In the sensorimotor-related brain regions, standardised uptake values in the bilateral somatosensory and motor cortices were observed in the electroacupuncture group. Metabolism particularly increased in the right somatosensory cortex. Metabolism changes also occurred in the pain-related brain regions and emotion- and cognition-related brain regions. CONCLUSION: The present study demonstrated the beneficial effects of electroacupuncture for relieving BPAI-induced neuropathic pain in rats. Electroacupuncture intervention might inhibit maladaptive plasticity in brain areas governing multidimensional functions, especially in sensorimotor- and cognition-related cortices.

11.
Neurosci Lett ; 718: 134727, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31887332

ABSTRACT

Motor recovery of wrist and fingers is still a great challenge for chronic stroke survivors. The present study aimed to verify the efficiency of motor imagery based brain-computer interface (BCI) control of continuous passive motion (CPM) in the recovery of wrist extension due to stroke. An observational study was conducted in 26 chronic stroke patients, aged 49.0 ± 15.4 years, with upper extremity motor impairment. All patients showed no wrist extension recovery. A 24-channel highresolution electroencephalogram (EEG) system was used to acquire cortical signal while they were imagining extension of the affected wrist. Then, 20 sessions of BCI-driven CPM training were carried out for 6 weeks. Primary outcome was the increase of active range of motion (ROM) of the affected wrist from the baseline to final evaluation. Improvement of modified Barthel Index, EEG classification and motor imagery pattern of wrist extension were recorded as secondary outcomes. Twenty-one patients finally passed the EEG screening and completed all the BCI-driven CPM trainings. From baseline to the final evaluation, the increase of active ROM of the affected wrists was (24.05 ± 14.46)˚. The increase of modified Barthel Index was 3.10 ± 4.02 points. But no statistical difference was detected between the baseline and final evaluations (P > 0.05). Both EEG classification and motor imagery pattern improved. The present study demonstrated beneficial outcomes of MI-based BCI control of CPM training in motor recovery of wrist extension using motor imagery signal of brain in chronic stroke patients.


Subject(s)
Brain/physiology , Imagery, Psychotherapy , Stroke Rehabilitation , Stroke/complications , Wrist Joint , Adult , Aged , Brain-Computer Interfaces , Electroencephalography , Female , Humans , Male , Middle Aged , Range of Motion, Articular , Recovery of Function , Wrist
SELECTION OF CITATIONS
SEARCH DETAIL