ABSTRACT
Tumor recurrence and wound healing represent significant burdens for tumor patients after the surgical removal of melanomas. Wound dressings with wound healing and anticancer therapeutic abilities could help to solve these issues. Thus, a hybrid hydrogel made of polyvinyl alcohol (PVA) and polyethylene imine (PEI) was prepared by cross-linking imine bond and boronic acid bond. This hydrogel was loaded with ruthenium nanorods (Ru NRs) and glucose oxidase (GOx) and named as nanocomposite hydrogel (Ru/GOx@Hydrogel), exhibiting remarkable photothermal/photodynamic/starvation antitumor therapy and wound repair abilities. Ru NRs are bifunctional phototherapeutic agents that simultaneously exhibit intrinsic photothermal and photodynamic functions. Three-dimensional composite hydrogel loaded with GOx can also consume glucose in the presence of O2 during tumor starvation therapy. Near-infrared (NIR) light-triggered hyperthermia can not only promote the consumption of glucose, but also facilitate the ablation of residual cancer cells. The antitumor effect of the Ru/GOx@Hydrogel resulted in significant improvements, compared to those observed with either phototherapy or starvation therapy alone. Additionally, the postoperative wound was substantially healed after treatment with Ru/GOx@Hydrogel and NIR irradiation. Therefore, the Ru/GOx@Hydrogel can be used as a multi-stimulus-responsive nanoplatform that could facilitate on-demand controlled drug release, and be used as a promising postoperative adjuvant in combination therapy.
Subject(s)
Hyperthermia, Induced , Nanotubes , Neoplasms , Ruthenium , Humans , Glucose Oxidase , Ruthenium/pharmacology , Polyethyleneimine , Polyvinyl Alcohol , Hydrogels/chemistry , Neoplasms/therapy , GlucoseABSTRACT
Chemodynamic therapy (CDT) is an emerging approach to treat cancer based on the tumor microenvironment (TME), but its limited content of endogenous hydrogen peroxide (H2O2) weakens the anticancer effects. Herein, a multifunctional biomimetic nanozyme (Se@SiO2-Mn@Au/DOX, named as SSMA/DOX) is fabricated, which undergoes TME responsive self-cascade catalysis to facilitate MRI guided enhanced chemo/chemodynamic therapy. The SSMA/DOX nanocomposites (NCs) responsively degrade in acidic conditions of tumor to release Se, DOX, Au and Mn2+. Mn2+ not only enables MRI to guided therapy, but also catalyzes the endogenous H2O2 into hydroxyl radical (ËOH) for CDT. In addition, the Au NPs continuously catalyze glucose to generate H2O2, enhancing CDT by supplementing a sufficiently reactive material and cutting off the energy supply of the tumor by consuming glucose. Simultaneously, Se enhances the chemotherapy of doxorubicin hydrochloride (DOX) and CDT by upregulating ROS in the tumor cells, achieving remarkable inhibition effect towards tumor. Moreover, SSMA/DOX NCs have good biocompatibility and degradability, which avoid long-term toxicity and side effects. Overall, the degradable SSMA/DOX NCs provide an innovative strategy for tumor microenvironment responsive self-cascade catalysis to enhance tumor therapy.
Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Photothermal Therapy , Uterine Cervical Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Catalysis , Cell Line , Doxorubicin/chemistry , Female , Gold/chemistry , Gold/pharmacology , Humans , Manganese/chemistry , Manganese/pharmacology , Materials Testing , Rats , Rats, Sprague-Dawley , Selenium/chemistry , Selenium/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Tumor Microenvironment/drug effectsABSTRACT
Radiotherapy (RT) is a popular clinical therapy method for extending cancer patient survival, but is hampered by severe side effects and the weak therapy effect. Herein, responsive degradable selenium (Se) theranostic agents (Se@SiO2 @Bi nanocomposites (NCs)) are fabricated, which combine computed tomography (CT) imaging and simultaneously enhance the therapeutic effects of photothermal therapy (PTT) and RT, while reducing the side effects of radiation. The Se@SiO2 @Bi theranostic agents can accumulate at the tumor site, and responsively decompose to releease Se, avoiding systemic toxicity by the element. Se enhances the effect of PTT/RT, simultaneously reducing the side effects of RT. The Se@SiO2 @Bi NCs as CT agents also exhibit significantly enhanced contrast imaging performance due to the high atomic number of Bi. More importantly, the Se@SiO2 @Bi NCs can be rapidly excreted without long-term toxicity, owing to responsive degradation into ultrasmall particles (<5 nm) at the tumor site. In vitro and in vivo results show that the Se@SiO2 @Bi NCs can remarkably inhibit tumor cells, without causing appreciable toxicity during the treatment. This study opens a new perspective in rationally designing responsive degradable theranostic agents for future tumor therapy with enhanced therapeutic efficacy and lesser side effects.
Subject(s)
Nanocomposites , Selenium , Humans , Phototherapy , Precision Medicine , Silicon Dioxide , Theranostic NanomedicineABSTRACT
Photothermal therapy (PTT) has emerged as one of the promising methodologies for the treatment of cancer, and ideal photothermal agents need to be biodegradable and have strong optical absorbance in the near-infrared (NIR) optical window. Here, we report a new phthalocyanine molecule, 4OCSPC, which expands the absorbance edge to 850 nm. Under 808 nm NIR laser irradiation, 4OCSPC polymeric micelles showed robust photostability and a high photothermal conversion of 47.0%. Also, the 4OCSPC polymeric micelles exhibit a high in vivo PTT efficacy against 4T1 tumors in mice.
Subject(s)
Hyperthermia, Induced/methods , Indoles/therapeutic use , Neoplasms/therapy , Phototherapy/methods , Polymers/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Animals , HeLa Cells , Humans , Infrared Rays/therapeutic use , Isoindoles , Mice , Micelles , Photoacoustic Techniques/methodsABSTRACT
Image-guided phototherapy is considered to be a prospective technique for cancer treatment because it can provide both oncotherapy and bioimaging, thus achieving an optimized therapeutic efficacy and higher treatment accuracy. Compared to complicated systems with multiple components, using a single material for this multifunctional purpose is preferable. In this work, we strategically fabricated poly(acrylic acid)- (PAA-) coated Cu2(OH)PO4 quantum dots [denoted as Cu2(OH)PO4@PAA QDs], which exhibit a strong near-infrared photoabsorption ability. As a result, an excellent photothermal conversion ability and the photoactivated formation of reactive oxygen species could be realized upon NIR irradiation, concurrently meeting the basic requirements for photothermal and photodynamic therapies. Moreover, phototherapeutic investigations on both cervical cancer cells in vitro and solid tumors of an in vivo mice model illustrated the effective antitumor effects of Cu2(OH)PO4@PAA upon 1064-nm laser irradiation, with no detectable lesions in major organs during treatment. Meanwhile, Cu2(OH)PO4@PAA is also an exogenous contrast for photoacoustic tomography (PAT) imaging to depict tumors under NIR irradiation. In brief, the Cu2(OH)PO4@PAA QDs prepared in this work are expected to serve as a multifunctional theranostic platform.
Subject(s)
Quantum Dots , Animals , Copper , Hydroxides , Mice , Phototherapy , Prospective Studies , Theranostic NanomedicineABSTRACT
A theranostic system of image-guided phototherapy is considered as a potential technique for cancer treatment because of the ability to integrate diagnostics and therapies together, thus enhancing accuracy and visualization during the treatment. In this work, we realized photoacoustic (PA) imaging-guided photothermal (PT)/photodynamic (PD) combined cancer treatment just via a single material, MoO3-x quantum dots (QDs). Due to their strong NIR harvesting ability, MoO3-x QDs can convert incident light into hyperthermia and sensitize the formation of singlet oxygen synchronously as evidenced by in vitro assay, hence, they can behave as both PT and PD agents effectively and act as a "dual-punch" to cancer cells. In a further study, elimination of solid tumors from HeLa-tumor bearing mice could be achieved in a MoO3-x QD mediated phototherapeutic group without obvious lesions to the major organs. In addition, the desired PT effect also makes MoO3-x QDs an exogenous PA contrast agent for in vivo live-imaging to depict tumors. Compared with previously reported theranostic systems that put several components into one system, our multifunctional agent of MoO3-x QDs is exempt from unpredictable mutual interference between components and ease of leakage of virtual components from the composited system.
Subject(s)
Molybdenum/chemistry , Oxides/chemistry , Photoacoustic Techniques , Phototherapy , Quantum Dots , Theranostic Nanomedicine , Animals , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Nanoparticles , Neoplasms, Experimental/therapyABSTRACT
Csx WO3 nanorods coated with polyelectrolyte multilayers are developed as "four-in-one" multifunctional nanomaterials with significant potential for computed tomography/photoacoustic tomography bimodal imaging-guided photothermal/photodynamic cancer treatment.