Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem Toxicol ; 182: 114155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898232

ABSTRACT

Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 µM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 µM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 µM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 µM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Zebrafish , Larva , Thyroid Hormones , Thyroid Gland , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity
2.
Small Methods ; 5(3): e2001045, 2021 03.
Article in English | MEDLINE | ID: mdl-34927824

ABSTRACT

Nanosafety is a major concern for nanotechnology development. Evaluation of the transcriptome and the DNA methylome is proposed for nanosafety assessments. RNA m6A modification plays a crucial role in development, disease, and cell fate determination through regulating RNA stability and decay. Here, since black phosphorus quantum dots (BPQDs), among many other types of QDs, increase the global m6A level and decrease the demethylase ALKBH5 level in lung cells, the epitranscriptome is taken into consideration for the first time to evaluate nanosafety. Both the transcriptome and m6A epitranscriptome analyses show that BPQDs alter many biological processes, such as the response to selenium ions and the lipoxygenase pathway, indicating possible ferroptosis activation. The results further show that BPQDs cause lipid peroxidation, mitochondrial dysfunction, and iron overload. Recognition of these modified mRNAs by YTHDF2 leads to mRNAs' decay and eventually ferroptosis. This study shows that RNA m6A modification not only is a more sophisticated indicator for nanosafety assessment but also provides novel insight into the role of RNA m6A in regulating BPQD-induced ferroptosis, which may be broadly applicable to understanding the functions of RNA m6A under stress.


Subject(s)
Ferroptosis , Quantum Dots , Ferroptosis/genetics , Phosphorus/metabolism , Quantum Dots/toxicity , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL