Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Cell Discov ; 8(1): 18, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35190523

ABSTRACT

Dietary folate deficiency (FD) is associated with the occurrence of birth defects. However, the mechanisms underlying this association remain elusive. In particular, how FD affects genome stability is unknown. To examine whether a folate-deficient diet can affect genome stability, C57BL/6 mice were maintained on a synthetic diet lacking of folic acid (FA) for two generations. F0 mice received the FD diet beginning at 3 weeks of age, and their offspring (F1) began the FD diet after weaning. Both male and female F1 mice fed the FD diet were intentionally crossed with F1 mice fed the normal diet to produce F2 mice. F2 embryos were dissected and collected at E14.5 and E18.5. The malformation ratio was significantly increased in F2 embryos fed the FD diet for two generations compared to those fed the normal diet. Whole-genome sequencing of multiple sibship with F1 males on the FD diet showed that the de novo mutation (DNM) rate in F2 embryos was three times of the reported spontaneous rate in mice. Furthermore, many DNMs observed in the F2 mice exhibited an allele ratio of 1:3 instead of 2:2, suggesting that these mutations are likely to accumulate in gamete cells as a form of mismatch in the DNA duplex. Our study indicated that FD for two generations significantly enhances DNM accumulation during meiosis, which might contribute to the increased negative birth outcomes among F2 mice. Not only maternal but also paternal FA supplementation is probably also necessary and beneficial to prevent birth defects.

2.
Birth Defects Res ; 110(12): 982-993, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29732722

ABSTRACT

BACKGROUND: Neural tube defects (NTDs) are clinically significant congenital malformations which are known to be folic acid (FA) responsive, such that supplementation significantly reduces the prevalence of NTDs. Nonetheless, some individuals fail to respond to FA supplementation; hence NTDs remain a significant public health concern. The mechanisms that underlie the beneficial effects of FA supplementation remain poorly understood. Mouse models have been used extensively to study the mechanisms driving neural tube closure (NTC). METHODS: Microarray data of GSE51285 was downloaded from the NCBI GEO database, which contains the RNA expression profiles of livers from five NTD mouse mutants (heterozygous females) and their corresponding wildtype (WT) controls. Those five NTD mutants have different responsiveness to FA supplementation. The differentially expressed genes (DEGs) between NTD heterozygous and WT mice, as well as the DEGs between FA-responsive and FA-resistant mutants were carefully examined. Weighted gene correlation network analysis (WGCNA) was performed in order to identify genes with high correlations to either FA responsiveness or NTDs, respectively. RESULTS: In total, we identified 18 genes related to the pathogenesis of NTDs, as well as 55 genes related to FA responsiveness. Eight more candidate genes (Abcc3, Gsr, Gclc, Mthfd1, Gart, Bche, Slc25a32, and Slc44a2) were identified by examining the DEGs of those genes involved in the extended folate metabolic pathway between FA-responsive and FA-resistant mutants. CONCLUSIONS: Those genes are involved in mitochondrial choline metabolism, de novo purine synthesis, and glutathione generation, suggesting that formate, choline, and manipulating antioxidant levels may be effective interventions in FA-resistant NTDs.


Subject(s)
Folic Acid/metabolism , Gene Regulatory Networks , Neural Tube Defects/genetics , Gene Expression Profiling , Gene Ontology , Humans , Metabolic Networks and Pathways , Mutation/genetics
3.
Proc Natl Acad Sci U S A ; 115(18): 4690-4695, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666258

ABSTRACT

Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.


Subject(s)
Formates/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Neural Tube Defects , Neural Tube , Animals , Biological Transport, Active/genetics , Humans , Mice , Mice, Transgenic , Neural Tube/embryology , Neural Tube/pathology , Neural Tube Defects/embryology , Neural Tube Defects/genetics , Neural Tube Defects/pathology , Neural Tube Defects/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL